留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Slow extraction system for booster ring at HIAF

Ruan Shuang Yang Jiancheng Ren Hang Liu Jie Sheng Lina Shen Guodong Wang Ruliang Du Heng Ma Guimei

阮爽, 杨建成, 任航, 等. 强流重离子加速器装置的增强器慢引出系统[J]. 强激光与粒子束, 2018, 30: 105104. doi: 10.11884/HPLPB201830.180056
引用本文: 阮爽, 杨建成, 任航, 等. 强流重离子加速器装置的增强器慢引出系统[J]. 强激光与粒子束, 2018, 30: 105104. doi: 10.11884/HPLPB201830.180056
Ruan Shuang, Yang Jiancheng, Ren Hang, et al. Slow extraction system for booster ring at HIAF[J]. High Power Laser and Particle Beams, 2018, 30: 105104. doi: 10.11884/HPLPB201830.180056
Citation: Ruan Shuang, Yang Jiancheng, Ren Hang, et al. Slow extraction system for booster ring at HIAF[J]. High Power Laser and Particle Beams, 2018, 30: 105104. doi: 10.11884/HPLPB201830.180056

强流重离子加速器装置的增强器慢引出系统

doi: 10.11884/HPLPB201830.180056
基金项目: 

National Natural Science Foundation of China 11705253

详细信息
  • 中图分类号: TL503.3

Slow extraction system for booster ring at HIAF

Funds: 

National Natural Science Foundation of China 11705253

More Information
    Author Bio:

    Ruan Shuang(1989—), male, Ph.D. candidate, mainly studies accelerator physics; ruanshuang@impcas.ac.cn

    Corresponding author: Yang Jiancheng(1976—), male, researcher, engaged in accelerator physics and technology; yangjch@impcas.ac.cn
  • 摘要: 中国科学院近代物理研究所承担的强流重离子加速器装置目前已进入了初步设计阶段。增强器作为该装置的主加速器,可利用双向涂抹技术将238U35+束的粒子数累积至1.0×1011,并将其从注入能量为17 MeV/u加速至高能量,引出能量的范围为200-835 MeV/u。为了提供s量级的准连续束以开展辐照实验,增强器中设计了慢引出系统,该系统将采用三分之一共振与RF-knockout的引出方法。同步加速器中有两种不同种类的六极磁铁,用于实现色品校正与共振驱动,并在设计中考虑了两者能同时运行并互不影响。针对增强器中不同引出能量的238U35+束,对其相应的稳定接受度模拟结果进行了比较,并给出了在引出静电偏转板处的光学匹配参数,这将为增强器中重离子束的慢引出及放射性次级束流分离器的入口光学设计提供重要的理论依据。
  • Figure  1.  Overall layout of the BRing

    Figure  2.  β functions (upper solid and dotted lines) and dispersion function (lower dashed line) of the BRing The marked extraction point represents the location of the electrostatic septum

    Figure  3.  (a) Locations of the horizontal chromaticity sextupole (SCH) and the vertical chromaticity sextupole (SCV) in the arc section of the BRing; (b) Locations of the main extraction elements in the straight section of the BRing

    Figure  4.  Operation procedures of the main extraction elements during the extraction flattop

    Figure  5.  The horizontal phase space at ESe1 of the 238U35+ beam

    Figure  6.  The horizontal phase space evolution at ESe1 for the 835 MeV/u of the 238U35+ beam, (a) represents the initial beam distribution in the horizontal plane; (b) and (c) represent the stable and outgoing separatrices respectively, the dashed area represents the extraction channel of 13 mm for ESe1; (d) represents the extracted seperatrices cut by the wires of ESe1 and the matched ellipse

    Table  1.   Lattice parameters of the BRing

    tunes Qx(Qy) 9.47(9.43)
    transition gamma γtr 7.64
    natural chromaticity ξx(ξy) -11.38 (-11.65)
    βx, max/m (βy, max/m) 17.57 (17.96) for dipole
    23.38 (23.26) for quadrupole in the arc section
    23.54 (23.94) for quadrupole in the straight section
    Dx, max/m 2.89 for dipole
    5.02 for quadrupole
    extraction point βx/m (βy/m) 9.87 (9.63)
    extraction point Dx/m 0.0
    下载: 导出CSV

    Table  2.   The simulation results for the 238U35+ beam

    extraction energy/(MeV·u-1) horizontal betatron tune horizontal chromaticity for extraction stable acceptance/(π·mm·mrad) wires location of ESe1/mm bump height at ESe1/mm sprial step/mm extraction angle/mrad
    200 9.35 -0.3 62 55 10 10 -3.694
    835 9.345 -0.3 30 55 15 10 -2.964
    下载: 导出CSV

    Table  3.   The optical parameters at ESe1 for the 238U35+ beam

    extraction energy/(MeV·u-1) βx/m βy/m αx αy Dx/m Dy/m Dx Dy εx_rms/(π·mm·mrad)
    200 12.858 9.220 0.744 -1.003 0.082 0 0.0039 0 0.280
    8.35 75.272 9.270 3.402 -1.007 -0.095 0 0.027 0 0.114
    下载: 导出CSV
  • [1] Xia J W, Zhan W L, Wei B W, et al. The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou[J]. Nuclear Instruments & Methods in Physics Research Sect. A, 2002, 488: 11-25 https://www.sciencedirect.com/science/article/pii/S0168900202004758
    [2] Yuan Y J, Yang J C, Xia J W, et al. Status of the HIRFL-CSR complex[J]. Nuclear Instruments & Methods in Physics Research Sect. B, 2013, 317: 214-217. https://www.sciencedirect.com/science/article/pii/S0168583X13008537
    [3] Zhan W L, Xia J W, Zhao H W, et al. HIRFL today[J]. Nuclear Physics A, 2008, 805: 533c-540c. https://www.sciencedirect.com/science/article/pii/S0375947408003874
    [4] Zhan W L, Xu H S, Xiao G Q, et al. Progress in HIRFL-CSR[J]. Nuclear Physics A, 2010, 834: 694c-700c. https://www.sciencedirect.com/science/article/pii/S0375947410001272
    [5] Yang J C, Xia J W, Xiao G Q, et al. High Intensity heavy ion Accelerator Facility (HIAF) in China[J]. Nuclear Instruments and Methods in Physics Research, Sect. B, 2013, 317: 263-265. https://www.sciencedirect.com/science/article/pii/S0168583X13009877
    [6] Wu B, Yang J C, Xia J W, et al. The design of the Spectrometer Ring at the HIAF[J]. Nuclear Instruments & Methods in Physics Research Sect. A, 2018, 881: 27-35. https://www.sciencedirect.com/science/article/pii/S0168900217308756
    [7] Qu G F, Chai W P, Xia J W, et al. Two-plane painting injection scheme for BRing of HIAF[J]. Nuclear Science and Techniques, 2017, 28: 114. doi: 10.1007/s41365-017-0260-5
    [8] Bryant P, Benedikt M, Badano L, et al. Proton-Ion Medical Machine Study (PIMMS), Part I[R]. CERN/PS 99-010(DI), 1999.
    [9] The MAD-X program users reference manual[DB/OL]. http://madx.web.cern.ch/madx.
    [10] Hardt W. Ultraslow extraction out of LEAR (transverse aspects)[R]. CERN/PS/DL/LEAR Note 81-6, 1981.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1321
  • HTML全文浏览量:  273
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-09
  • 修回日期:  2018-06-01
  • 刊出日期:  2018-10-15

目录

    /

    返回文章
    返回