留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湍流大气中激光上行和下行传输时相位奇点的演化

葛筱璐 王本义 郭立萍 满忠胜

葛筱璐, 王本义, 郭立萍, 等. 湍流大气中激光上行和下行传输时相位奇点的演化[J]. 强激光与粒子束, 2018, 30: 121001. doi: 10.11884/HPLPB201830.180228
引用本文: 葛筱璐, 王本义, 郭立萍, 等. 湍流大气中激光上行和下行传输时相位奇点的演化[J]. 强激光与粒子束, 2018, 30: 121001. doi: 10.11884/HPLPB201830.180228
Ge Xiaolu, Wang Benyi, Guo Liping, et al. Behavior of phase singularities for laser beam propagating through uplink and downlink atmospheric turbulence paths[J]. High Power Laser and Particle Beams, 2018, 30: 121001. doi: 10.11884/HPLPB201830.180228
Citation: Ge Xiaolu, Wang Benyi, Guo Liping, et al. Behavior of phase singularities for laser beam propagating through uplink and downlink atmospheric turbulence paths[J]. High Power Laser and Particle Beams, 2018, 30: 121001. doi: 10.11884/HPLPB201830.180228

湍流大气中激光上行和下行传输时相位奇点的演化

doi: 10.11884/HPLPB201830.180228
基金项目: 

国家自然科学基金项目 11704226

国家自然科学基金项目 11604182

山东省自然科学基金项目 ZR2017MA051

山东省自然科学基金项目 ZR2016AB05

详细信息
    作者简介:

    葛筱璐(1979—),女,博士,副教授,主要从事激光大气传输及信息光学方面的研究; xlge@sdut.edu.cn

  • 中图分类号: O438; TN241

Behavior of phase singularities for laser beam propagating through uplink and downlink atmospheric turbulence paths

  • 摘要: 利用激光大气传输四维程序数值模拟了激光在湍流大气中上行和下行传输时产生的相位奇点的变化过程。由模拟结果可知,当光束自地面向空中垂直上行传输时,相位奇点数密度随传输高度的变化有一个从无到有、从快速增加到缓慢增加、达到峰值后又减小的过程;湍流越强,畸变光场中产生的相位奇点数密度越大,达到的峰值越高,且达到峰值后减小的幅度也越大,但达到峰值时对应的传输高度越低;当激光自空中某一位置垂直下行传输时,相位奇点数密度随传输距离的增加有一个从无到有、从缓慢增加到快速增加且在接近地平面处急剧增加的过程。另外,通过对模拟结果的曲线拟合发现,激光在湍流大气中上行传输时产生的相位奇点数密度与传输高度的关系符合黑体辐射公式;当激光在湍流大气中下行传输时,相位奇点数密度随传输距离的增加呈指数增加。
  • 图  1  湍流强度按H-V模型的垂直分布廓线

    Figure  1.  Vertical profile of turbulence strength with H-V model

    图  2  公式(8)的环路积分计算示意图

    Figure  2.  Geometric meaning of Eq.(8)

    图  3  上行传输时,不同湍流强度下相位奇点数密度随传输高度的变化

    Figure  3.  Density of phase singularities vs propagation height with different turbulence strength along an uplink path

    图  4  下行传输时,不同湍流强度下的相位奇点数密度随传输距离的变化

    Figure  4.  Density of phase singularities versus propagation height with different turbulence strength along a downlink path

    表  1  上行传输时,不同湍流强度下的拟合参量值

    Table  1.   Values of fitting parameters for different turbulence strength along an uplink path

    Cn2(0)/m-2/3 A B n
    4.18×10-15 7.263 89×106 51.836 23 2.963 80
    2.09×10-14 1.179 76×105 14.975 62 2.015 38
    4.18×10-14 4.055 25×104 8.632 92 1.735 97
    下载: 导出CSV

    表  2  下行传输时,不同湍流强度下的拟合参量值

    Table  2.   Values of fitting parameters for different turbulence strength along a downlink path

    Cn2(0)/m-2/3 y0 A B
    4.18×10-15 -0.047 72 7.741 74×10-7 1.208 82
    2.09×10-14 -0.283 51 0.001 60 1.815 64
    4.18×10-14 -0.889 90 0.069 23 2.473 72
    下载: 导出CSV
  • [1] Berry M V. Making waves in physics. Three wave singularities from the miraculous 1830s[J]. Nature, 2000, 403(6765): 21. doi: 10.1038/47364
    [2] Nye J F, Berry M V. Dislocation in wave trains[J]. Proc R Soc Lond A, 1974, 336(1605): 165-190. doi: 10.1098/rspa.1974.0012
    [3] Berry M V. Disruption of wavefronts: statistics of dislocations in incoherent Gaussian random waves[J]. J Phys A, 1978, 11(1): 27-37. doi: 10.1088/0305-4470/11/1/007
    [4] Berry M V. Singularities in waves and rays[M]//Les Houches Session XXV—Physics of Defects (Balian R, kléman M, Poirier J P, ed. ), Amsterdam: North-Holland, 1981, 35: 453-543.
    [5] Nye J F, Hajnal J V, Hannay J H. Phase saddles and dislocations in two-dimensional wave such as tides[J]. Proc R Soc Lond A, 1988, 417(1852): 7-20. doi: 10.1098/rspa.1988.0047
    [6] Berry M V. Much ado about nothing: optical dislocation lines[C]//Proc of SPIE. 1998, 3487: 1-15.
    [7] Berry M V, Dennis M R. Phase singularities in isotropic random waves[J]. Proc R Soc Lond A, 2000, 456(1605): 2059-2079.
    [8] Fried D L, Vaughn J L. Branch cuts in the phase function[J]. Appl Opt, 1992, 31(15): 2865-2882. doi: 10.1364/AO.31.002865
    [9] Fried D L. Branch point problem in adaptive optics[J]. J Opt Soc Am A, 1998, 15(15): 2759-2768.
    [10] Voitsekhovich V V, Kouznetsov D, Morozov D K h. Density of turbulence-induced phase dislocations[J]. Appl Opt, 1998, 37(21): 4525-4535. doi: 10.1364/AO.37.004525
    [11] 范承玉, 王英俭, 龚知本. 光波相位不连续点的探测[J]. 光学学报, 2001, 21(11): 1388-1391. doi: 10.3321/j.issn:0253-2239.2001.11.024

    Fan Chengyu, Wang Yingjian, Gong Zhiben. Detection of branch-point in light phase. Acta Optica Sinica, 2001, 21(11): 1388-1391 doi: 10.3321/j.issn:0253-2239.2001.11.024
    [12] 饶瑞中. 湍流大气中的准直激光束: 分形结构与相位不连续点[J]. 强激光与粒子束, 2002, 14(4): 501-504. http://www.hplpb.com.cn/article/id/1306

    Rao Ruizhong. Collimated laser beam in a turbulent atmosphere: fractal structure and phase branch points. High Power Laser and Particle Beams, 2002, 14(4): 501-504 http://www.hplpb.com.cn/article/id/1306
    [13] 范承玉, 王英俭, 龚知本. 相位不连续点对自适应光学的影响[J]. 强激光与粒子束, 2003, 15(5): 435-438. http://www.hplpb.com.cn/article/id/2104

    Fan Chengyu, Wang Yingjian, Gong Zhiben. Effect of branch points on adaptive optics. High Power Laser and Particle Beams, 2003, 15(5): 435-438 http://www.hplpb.com.cn/article/id/2104
    [14] Li Youkuan. Branch point effect on adaptive correction[C]//Proc of SPIE. 2004, 5490: 1064-1070.
    [15] Zhang Y, Tao C. Wavefront dislocations of Gaussian beams nesting optical vortices in a turbulent atmosphere[J]. Chin Opt Lett, 2004, 2(10): 559-561.
    [16] 葛筱璐, 范承玉, 王英俭. 相位不连续点数目随湍流强度的变化[J]. 光学学报, 2008, 28(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200801001.htm

    Ge Xiaolu, Fan Chengyu, Wang Yingjian. Variation of phase branch point number with turbulence strength in laser propagation through atmosphere. Acta Optica Sinica, 2008, 28(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200801001.htm
    [17] Rao Ruizhong. Statistics of the fractal structure and phase singularity of a plane light wave propagation in atmospheric turbulence[J]. Appl Opt, 2008, 47(2): 269-276. doi: 10.1364/AO.47.000269
    [18] 饶瑞中. 大气中的光学涡旋及其传播[J]. 红外与激光工程, 2009, 38(4): 609-615. doi: 10.3969/j.issn.1007-2276.2009.04.008

    Rao Ruizhong. Optical vortices and its propagation in the atmosphere. Infrared and Laser Engineering, 2009, 38(4): 609-615 doi: 10.3969/j.issn.1007-2276.2009.04.008
    [19] 苑克娥, 朱文越, 饶瑞中. 湍流大气中光束的相位不连续点数密度[J]. 光子学报, 2009, 38(2): 410-413. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200902040.htm

    Yuan Ke'e, Zhu Wenyue, Rao Ruizhong. Density of phase branch points for a light wave propagation in atmospheric turbulence. Acta Photonica Sinica, 2009, 38(2): 410-413 https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200902040.htm
    [20] Oesch D W, Sanchez D J, Matson C L. The aggregate behavior of branch points—measuring the number and velocity of atmospheric turbulence layers[J]. Opt Express, 2010, 18(21): 22377-22392. doi: 10.1364/OE.18.022377
    [21] Oesch D W, Sanchez D J, Tewksbury-Christle C M. Aggregate behavior of branch points—persistent pairs[J]. Opt Express, 2012, 20(2): 1046-1059.
    [22] 王英俭. 激光大气传输及其位相补偿的若干问题探讨[D]. 合肥: 中国科学院安徽光学精密机械研究所, 1996.

    Wang Yingjian. Some problems' discuss about the laser propagation in the atmosphere and its phase compensation. Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 1996.
    [23] Smith F G. Atmospheric propagation of radiation[M]. Bellingham: SPIE Press, 1993.
    [24] 宋正方. 应用大气光学基础[M]. 北京: 气象出版社, 1990.

    Song Zhengfang. Elements of applied atmospheric optics. Beijing: China Meterorological Press, 1990
    [25] 孙刚, 翁宁泉, 肖黎明, 等. 不同地区大气折射率结构常数分布特性及分析[J]. 强激光与粒子束, 2005, 17(4): 485-490. http://www.hplpb.com.cn/article/id/443

    Sun Gang, Weng Ningquan, Xiao Liming, et al. Profile and character of atmospheric structure constants of refractive index. High Power Laser and Particle Beams, 2005, 17(4): 485-490 http://www.hplpb.com.cn/article/id/443
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1141
  • HTML全文浏览量:  282
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-30
  • 修回日期:  2018-11-21
  • 刊出日期:  2018-12-15

目录

    /

    返回文章
    返回