留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准单能中子单粒子效应研究现状

韩金华 郭刚 陈启明 文章 张付强

韩金华, 郭刚, 陈启明, 等. 准单能中子单粒子效应研究现状[J]. 强激光与粒子束, 2019, 31: 020201. doi: 10.11884/HPLPB201931.180254
引用本文: 韩金华, 郭刚, 陈启明, 等. 准单能中子单粒子效应研究现状[J]. 强激光与粒子束, 2019, 31: 020201. doi: 10.11884/HPLPB201931.180254
Han Jinhua, Guo Gang, Chen Qiming, et al. Quasi-monoenergetic neutron single event effects[J]. High Power Laser and Particle Beams, 2019, 31: 020201. doi: 10.11884/HPLPB201931.180254
Citation: Han Jinhua, Guo Gang, Chen Qiming, et al. Quasi-monoenergetic neutron single event effects[J]. High Power Laser and Particle Beams, 2019, 31: 020201. doi: 10.11884/HPLPB201931.180254

准单能中子单粒子效应研究现状

doi: 10.11884/HPLPB201931.180254
详细信息
    作者简介:

    韩金华(1987—), 男,硕士,从事辐射物理研究;jinhua.h@outlook.com

    通讯作者:

    郭刚(1966—), 男,研究员,从事辐射物理研究;ggg@ciae.ac.cn

  • 中图分类号: O571.5

Quasi-monoenergetic neutron single event effects

  • 摘要: 对国际上用于单粒子效应(SEE)研究的准单能中子源进行了相关调研,对产生准单能中子源的7Li(p, n)7Be核反应、装置布局以及表征中子场性质的中子注量率、中子能谱、中子束流轮廓及其均匀性、热中子本底等参数的理论计算及实验测量进行了系统的介绍。进行准单能中子SEE实验要求中子源有较高的中子注量率水平、较大的束流轮廓、较好的束流均匀性以及较低的热中子本底,并且能测量出精确的中子能谱。对准单能中子SEE实验过程以及三种中子SEE截面的尾部修正方法进行了介绍。
  • 图  1  日本理化学研究所(RIKEN)使用飞行时间法测量得到的不同能量质子轰击10 mm厚7Li靶在0°散射角距离靶12 m处的中子能谱[21]

    Figure  1.  Energy spectra of quasi-monoenergetic neutron sources generated from a 10 mm thick 7Li target bombarded by protons of different energies at RIKEN. They were measured on the neutron beam line at 12 m from the 7Li target by the TOF method[21]

    图  2  日本原子能机构高崎先进辐射研究所(TIARA)的准单能中子源装置布局示意图[19]

    Figure  2.  Schematic view of TIARA 7Li(p, n) quasi- monoenergetic neutron source facility[19]

    图  3  使用TALYS,Geant4,Fluka计算的100 MeV质子与7Li核反应产生的准单能中子能谱(即0°角的双微分截面)

    Figure  3.  Energy spectra (i.e. double differential crosssections at the 0° angle) for the quasi-monoenergeticneutrons from the nuclear reactions betweenthe 100 MeV protons and 7Li calculatedby TALYS, Geant4 and Fluka

    图  4  CYRIC准单能中子场距准直器出口1 m处的束流轮廓图[22]

    Figure  4.  Neutron profile for CYRIC 7Li(p, n) quasi- monoenergetic neutron source measured on the neutron beam line at 1 m from the collimator exit[22]

    图  5  NAC的7Li(p, n)中子源在0°和16°方向中子能谱的比较[49]

    Figure  5.  Spectral fluence per unit monitor reading N at neutron emission angles of 0° and 16° relative to the proton beam direction for NAC 7Li(p, n) neutron source[49]

    表  1  国际上用于SEE研究的各7Li(p, n)中子源装置及相关参数[10, 18]

    Table  1.   7Li(p, n) neutron source facilities for SEE tests and the related parameters[10, 18]

    institution country energy/MeV beam current/μA ΔE/MeV distance/m flux/(cm-2·s-1)
    UC Davis USA 40~60 10 1 3 6×105
    UCL Belgium 20~65 10 2 3.3 106
    TRIUMF Canada 70~200 0.3 0.7 ~1 105
    TSL Sweden 25~180 10 1 3 3×105
    RCNP Japan 392 1.0 1 ~1 3×105
    TIARA Japan 30~85 3 2 5.2 1.2×105
    CYRIC Japan 50~8520~50 3(H+)10(H-) 1 1.0 1.0×106~107
    下载: 导出CSV
  • [1] Petersen E. Single event effects in aerospace[M]. Hoboken, New Jersey: Wiley-IEEE Press, 2012: 48-57.
    [2] Ziegler J F. Terrestrial cosmic ray intensities[J]. IBM Journal of Research and Development, 1998, 42(1): 125-139.
    [3] Normand E, Baker T J. Altitude and latitude variations in avionics SEU and atmospheric neutron flux[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1484-1490. doi: 10.1109/23.273514
    [4] 蔡明辉, 韩建伟, 李小银, 等. 临近空间大气中子环境的仿真研究[J]. 物理学报, 2009, 58(9): 6659-6664. doi: 10.3321/j.issn:1000-3290.2009.09.124

    Cai Minghui, Han Jianwei, Li Xiaoyin, et al. A simulation study of the atmospheric neutron environment in near space. Acta Physica Sinica, 2009, 58(9): 6659-6664 doi: 10.3321/j.issn:1000-3290.2009.09.124
    [5] Hands A, Dyer C S, Lei F. SEU rates in atmospheric environments: variations due to cross-section fits and environment models[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 2026-2034. doi: 10.1109/TNS.2009.2013466
    [6] Normand E. Single event upset at ground level[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2742-2750. doi: 10.1109/23.556861
    [7] IEC TS 62396, Process management for avionics: atmospheric radiation effects-Part 1: accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment[S].
    [8] 曹秀云. 临近空间飞行器成为各国近期研究的热点(上)[J]. 中国航天, 2006(6): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT200606009.htm

    Cao Xiuyun. Near space vehicles have become a hot research topic for several years in many countries (Ⅰ). Aerospace China, 2006(6): 32-36 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT200606009.htm
    [9] 李怡勇, 李智, 沈怀荣. 临近空间飞行器发展与应用分析[J]. 装备指挥技术学院学报, 2008, 19(2): 61-65. doi: 10.3783/j.issn.1673-0127.2008.02.015

    Li Yiyong, Li Zhi, Shen Huairong. Development and application analysis of near space vehicles. Journal of the Academy of Equipment Command & Technology, 2008, 19(2): 61-65 doi: 10.3783/j.issn.1673-0127.2008.02.015
    [10] 中村刚史, 马场首, 伊部英治, 等. 大气中子在先进存储器件中引起的软错误[M]. 北京: 国防工业出版社, 2015: 62-147.

    Nakamura T, Ibe E, Kamayama H, et al. Terrestrial neutron-induced soft errors in advanced memory devices. Beijing: National Defense Industry Press, 2015: 62-147
    [11] Autran J L, Roche P, Borel J, et al. Altitude SEE test European platform (ASTEP): project overview and first results in CMOS 130 nm and perspectives[J]. IEEE Transactions on Nuclear Science, 2007, 54(4): 1002-1009. doi: 10.1109/TNS.2007.891398
    [12] King M P, Reed R A, Weller R A, et al. Electron-induced single-event upsets in static random access memory[J]. IEEE Transactions on Nuclear Science, 2013, 60(6): 4122-4129. doi: 10.1109/TNS.2013.2286523
    [13] 丁大钊, 叶春堂, 赵志祥, 等. 中子物理学(上册)[M]. 2版. 北京: 原子能出版社, 2005.

    Ding Dazhao, Ye Chuntang, Zhao Zhixiang. Neutron Physics (Part Ⅰ). 2nd ed. Beijing: Atomic Energy Press, 2005
    [14] Miller F, Weulersse C, Carriere T, et al. Investigation of 14 MeV neutron capabilities for SEU hardness evaluation[J]. IEEE Transactions on Nuclear Science, 2013, 60(4): 2789-2796. doi: 10.1109/TNS.2013.2241078
    [15] Gasiot G, Ferlet-Cavrois V, Baggio J, et al. SEU sensitivity of bulk and SOI technologies to 14-MeV neutrons[J]. IEEE Transactions on Nuclear Science, 2002, 49(6): 3032-3037. doi: 10.1109/TNS.2002.805395
    [16] 范辉, 郭刚, 沈东军, 等. 14 MeV中子引发SRAM器件单粒子效应实验研究[J]. 原子能科学技术, 2015, 49(1): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201501029.htm

    Fan Hui, Guo Gang, Shen Dongjun, et al. Experimental study on 14 MeV neutron induced single-event-effect in SRAMs. Atomic Energy Science and Technology, 2015, 49(1): 171-175 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201501029.htm
    [17] JEDEC Standard, no. 89, Measurement and reporting of alpha particles and terrestrial cosmic ray-induced soft errors in semiconductor devices[S]. 2001.
    [18] Baba M. Quasi-monoenergetic neutron sources[C]//Proc Sci Syrmp on Fast Neutron Detection and Its Application (FNDA). 2006: 1-10.
    [19] Baba M, Nauchi Y, Iwasaki T, et al. Characterization of a 40-90 MeV 7Li(p, n) neutron source at TIARA using a proton recoil telescope and a TOF method[J]. Nuclear Instruments & Methods in Physics Research, 1999, 428(2/3): 454-465.
    [20] Watson J W, Pourang R, Abegg R, et al. 7Li(p, n)7Be and 12C(p, n)12N reactions at 200, 300, and 400 MeV[J]. Physical Review C, 1989, 40(1): 22-26. doi: 10.1103/PhysRevC.40.22
    [21] Nakao N, Kurosawa T, Nakamura T, et al. Development of a quasi-monoenergetic neutron field and measurements of the response function of an organic liquid scintillator for the neutron energy range from 66 to 206 MeV[J]. Nuclear Instruments & Methods in Physics Research A, 2002, 476(1): 176-180.
    [22] Baba M, Okamura H, Hagiwara M, et al. Installation and application of an intense 7Li(p, n) neutron source for 20-90 MeV region[J]. Radiation Protection Dosimetry, 2007, 126(1/4): 13-17.
    [23] Mashnik S G, Chadwick M B, Hughes H G, et al. 7-Li(p, n) nuclear data library for incident proton energies to 150 MeV[R]. LA-UR-00-1067, 2000.
    [24] Koning A J, Hilaire S, Duijvestijn M C. TALYS: Comprehensive nuclear reaction modeling[C]//American Institute of Physics. 2005: 1154-1159.
    [25] Agostinelli S, Allison J, Amako K, et al. Geant4—a simulation toolkit[J]. Nuclear Instruments & Methods in Physics Research, 2003, 506(3): 250-303.
    [26] Ferrari A, Sala P R, Fasso A, et al. FLUKA: A multi-particle transport code[J]. Lancet, 2005, 7740: 44-45.
    [27] Prokofiev A, Chadwick M, Mashnik S, et al. Development and validation of the 7Li(p, n) nuclear data library and its application in monitoring of intermediate energy neutrons[J]. Journal of Nuclear Science & Technology, 2002, 39(s2): 112-115.
    [28] Hashimoto S, Iwamoto O, Iwamoto Y, et al. PHITS simulation of quasi-monoenergetic neutron sources from 7Li(p, n) reactions[J]. Energy Procedia, 2015, 71: 191-196.
    [29] Taddeucci T N, Goulding C A, Carey T A, et al. The (p, n) reaction as a probe of beta decay strength[J]. Nuclear Physics, 1987, 469(1): 125-172.
    [30] Uwamino Y, Soewarsono T S, Sugita H, et al. High-energy p-Li neutron field for activation experiment[J]. Nuclear Instruments & Methods in Physics Research A, 1997, 389(3): 463-473.
    [31] Ohlsen G G. Kinematic relations in reactions of the form A+B→C+D+E[J]. Nuclear Instruments & Methods, 1965, 37(2): 240-248.
    [32] Young P G, Arthur E D, Chadwick M B. Comprehensive nuclear model calculations: introduction to the theory and use of the GNASH code[J]. 1992.
    [33] Mashnik S G, Bull J S. MCNP6 simulation of quasi-monoenergetic 7Li(p, n) neutron sources below 150 MeV[J]. Nuclear Data Sheets, 2014, 118(1): 323-325.
    [34] Schuhmacher H, Brede H J, Dangendorf V, et al. Quasi-monoenergetic neutron beams with energies from 25 to 70 MeV[J]. Nuclear Instruments & Methods in Physics Research, 1999, 421(1/2): 284-295.
    [35] Nakao N, Nakamura T, Baba M, et al. Measurements of response function of organic liquid scintillator for neutron energy range up to 135 MeV[J]. Nuclear Instruments & Methods in Physics Research, 1995, 362(2/3): 454-465.
    [36] Meigo S. Measurements of the response function and the detection efficiency of an NE213 scintillator for neutrons between 20 and 65 MeV[J]. Nuclear Instruments & Methods in Physics Research, 1997, 401(2/3): 365-378.
    [37] Nakao N, Uwamino Y, Nakamura T, et al. Development of a quasi-monoenergetic neutron field using the 7Li(p, n)7Be reaction in the 70-210 MeV energy range at RIKEN[J]. Instruments & Methods in Physics Research, 1999, 420(1/2): 218-231.
    [38] Bedogni R, Domingo C, Amgarou K, et al. Spectrometry of 50 and 100 MeV quasi monochromatic neutron fields with extended range Bonner spheres[J]. Nuclear Instruments & Methods in Physics Research A, 2014, 746(9): 59-63.
    [39] Shikaze Y, Tanimura Y, Saegusa J, et al. Investigation of properties of the TIARA neutron beam facility of importance for calibration applications[J]. Radiation Protection Dosimetry, 2007, 126(1/4): 163-167.
    [40] 李春娟, 陈军, 王志强, 等. (20~400)MeV准单能中子参考辐射场的建立方法[J]. 宇航计测技术, 2013, 33(5): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ201305014.htm

    Li Chunjuan, Chen Jun, Wang Zhiqiang, et al. Quasi-monoenergetic neutron reference fields with energies from 20 MeV to 400 MeV. Journal of Astronautic Metrology and Measurement, 2013, 33(5): 62-67 https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ201305014.htm
    [41] Pomp S, Prokofiev A V, Blomgren J, et al. The new Uppsala neutron beam facility[C]//AIP Conference. 2005: 780-783.
    [42] Fang Y P, Oates A S. Thermal neutron-induced soft errors in advanced memory and logic devices[J]. IEEE Transactions on Device & Materials Reliability, 2014, 14(1): 583-586.
    [43] Prokofiev A V, Blomgren J, Platt S P, et al. ANITA—a new neutron facility for accelerated SEE testing at the Svedberg Laboratory[C]//IEEE International Reliability Physics Symposium. 2009: 929-935.
    [44] Dyer C S, Clucas S N, Sanderson C, et al. An experimental study of single-event effects induced in commercial SRAMs by neutrons and protons from thermal energies to 500 MeV[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 2817-2824.
    [45] Johansson K, Dyreklev P, Granbom B, et al. Energy-resolved neutron SEU measurements from 22 to 160 MeV[J]. IEEE Transactions on Nuclear Science, 2002, 45(6): 2519-2526.
    [46] Lambert D, Baggio J, Hubert G, et al. Analysis of quasi-monoenergetic neutron and proton SEU cross sections for terrestrial applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(4): 1890-1896.
    [47] Granlund T, Granbom B, Olsson N. A comparative study between two neutron facilities regarding SEU[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 493-497.
    [48] Petersen E L, Pickel J C, Smith E C, et al. Geometrical factors in SEE rate calculations[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1888-1909.
    [49] Nolte R, Allie M S, Binns P J, et al. High-energy neutron reference fields for the calibration of detectors used in neutron spectrometry[J]. Nuclear Instruments & Methods in Physics Research A, 2002, 476(1/2): 369-373.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1243
  • HTML全文浏览量:  240
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-30
  • 修回日期:  2019-01-14
  • 刊出日期:  2019-02-15

目录

    /

    返回文章
    返回