留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种准光反射聚焦微波放电大气等离子体装置

杨浩 闫二艳 郑强林 刘忠 胡海鹰

杨浩, 闫二艳, 郑强林, 等. 一种准光反射聚焦微波放电大气等离子体装置[J]. 强激光与粒子束, 2019, 31: 053002. doi: 10.11884/HPLPB201931.180350
引用本文: 杨浩, 闫二艳, 郑强林, 等. 一种准光反射聚焦微波放电大气等离子体装置[J]. 强激光与粒子束, 2019, 31: 053002. doi: 10.11884/HPLPB201931.180350
Yang Hao, Yan Eryan, Zheng Qianglin, et al. A microwave plasma system with quasi optical focusing reflector[J]. High Power Laser and Particle Beams, 2019, 31: 053002. doi: 10.11884/HPLPB201931.180350
Citation: Yang Hao, Yan Eryan, Zheng Qianglin, et al. A microwave plasma system with quasi optical focusing reflector[J]. High Power Laser and Particle Beams, 2019, 31: 053002. doi: 10.11884/HPLPB201931.180350

一种准光反射聚焦微波放电大气等离子体装置

doi: 10.11884/HPLPB201931.180350
基金项目: 高功率微波技术重点实验室项目
详细信息
    作者简介:

    杨浩(1992—), 男,本科,从事高功率微波等离子体研究; mushui9@qq.com

    通讯作者:

    闫二艳(1978—),女,博士,从事高功率微波等离子体研究; yaneryan_2002@163.com

  • 中图分类号: O531

A microwave plasma system with quasi optical focusing reflector

  • 摘要: 设计了一种准光反射聚焦方式的微波放电大气等离子体实验装置,装置包括大气环境模拟室和微波辐射聚焦系统。辐射微波在腔室中心形成kV/cm量级的非均匀强场,击穿大气产生等离子体。通过仿真计算了腔室内的空间辐射场分布,并利用小信号传递的方式进行测量,测量结果与仿真相符,形成的等离子体形态与辐射场分布强弱一致。电磁场在聚焦区域形成驻波,等离子体出现明显分层现象。实验通过拍照记录了不同参数条件下的等离子体图样,等离子体形态随气压升高而收缩,放电区域受场强和气压共同影响。对实验结果进行分析,验证了该装置的能力。
  • 图  1  装置示意图

    Figure  1.  Sketch map of experimental device

    图  2  腔体电场分布仿真结果

    Figure  2.  Simulation of electric field distribution

    图  3  测量与仿真电场分布对比

    Figure  3.  Comparison of measured and simulated electric field distribution

    图  4  测量电场与等离子体光强对比

    Figure  4.  Comparison of electric field and plasma

    图  5  不同场强下的等离子体图样

    Figure  5.  Plasma images under different electric field

    图  6  不同气压下的等离子体图样

    Figure  6.  Plasma images under different atmosphere pressure

  • [1] Robert J B, Edi S. 高功率微波源与技术[M]. 北京: 清华大学出版社, 2005.

    Robert J B, Edi S. High-power microwave sources and technology. Beijing: Tsinghua University Press, 2005
    [2] Andrei V G, Victor L G. Application of high-power microwaves[M]. Artech House, 1994.
    [3] Yan Eryan, Qiu Feng, Yang Hao, et al. Research of HPM plasma breakdown characteristics[C]//APCPST2016.2016.
    [4] 刘繁, 汪建华, 王秋良, 等. 常压微波等离子体炬装置的模拟与设计[J]. 强激光与粒子束, 2011, 23(6): 1504-1508. http://www.hplpb.com.cn/article/id/5279

    Liu Fan, Wang Jianhua, Wang Qiuliang, et al. Numerical modeling and design of atmospheric pressure microwave plasma jet. High Power Laser and Particle Beams, 2011, 23(6): 1504-1508 http://www.hplpb.com.cn/article/id/5279
    [5] 刘亮, 张贵新, 朱志杰, 等. 一种大气微波环形波导等离子体设备[J]. 强激光与粒子束, 2007, 19(7): 1501-1506. http://www.hplpb.com.cn/article/id/3452

    Liu Liang, Zhang Guixin, Zhu Zhijie, et al. Atmospheric pressure microwave plasma system with ring waveguide. High Power Laser and Particle Beams, 2007, 19(7): 1501-1506 http://www.hplpb.com.cn/article/id/3452
    [6] 周传明, 刘国治, 刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007.

    Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources. Beijing: Atomic Energy Press, 2007
    [7] Woo W, DeGroot J S. Microwave absorption and plasma heating due to microwave breakdown in the atmosphere[J]. Phys Fluids, 1984, 27(2): 475-487. doi: 10.1063/1.864645
    [8] Vidmar R J. On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers[J]. IEEE Trans Plasma Sci, 1990, 18(4): 733-741. doi: 10.1109/27.57528
    [9] 邱风, 闫二艳, 孟凡宝, 等. 开放空间等离子体对微波传输影响的模拟研究[J]. 强激光与粒子束, 2015, 27: 103234. doi: 10.11884/HPLPB201527.103234

    Qiu Feng, Yan Eryan, Meng Fanbao, et al. Simulation research on transmission of microwave by plasmas at open space. High Power Laser and Particle Beams, 2015, 27: 103234 doi: 10.11884/HPLPB201527.103234
    [10] Zhou Qianhong, Dong Zhiwei. Theoretical study on the energy loss induced by electron collisions in weakly ionized air plasma[J]. Acta Physica Sinica, 2013, 62: 205201. doi: 10.7498/aps.62.205201
    [11] Liao B, Zhang S J, Na Z, et al. Study on low-power microwave plasma source based on microstrip split-ring resonator[J]. Journal of Shanghai Jiaotong University, 2009, 43(3): 372-376. doi: 10.3321/j.issn:1006-2467.2009.03.008
    [12] Qiu F, Yan E, Meng F, et al. Analysis based on global model of nitrogen plasma produced by pulsed microwave at low pressure[J]. Physics of Plasmas, 2015, 22: 073506. doi: 10.1063/1.4926588
    [13] Yang W, Zhou Q, Dong Z. Simulation study on nitrogen vibrational and translational temperature in air breakdown plasma generated by 110 GHz focused microwave pulse[J]. Physics of Plasmas, 2017, 24: 013111. doi: 10.1063/1.4974161
  • 加载中
图(6)
计量
  • 文章访问数:  1451
  • HTML全文浏览量:  327
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-04
  • 修回日期:  2019-01-03
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回