留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丝阵负载Z箍缩早期过程的研究

石桓通 邹晓兵 朱鑫磊 赵屾 王新新

石桓通, 邹晓兵, 朱鑫磊, 等. 丝阵负载Z箍缩早期过程的研究[J]. 强激光与粒子束, 2018, 30: 085001. doi: 10.11884/HPLPB201830.170320
引用本文: 石桓通, 邹晓兵, 朱鑫磊, 等. 丝阵负载Z箍缩早期过程的研究[J]. 强激光与粒子束, 2018, 30: 085001. doi: 10.11884/HPLPB201830.170320
Shi Huantong, Zou Xiaobing, Zhu Xinlen, et al. Research on early stages of wire array Z-pinch[J]. High Power Laser and Particle Beams, 2018, 30: 085001. doi: 10.11884/HPLPB201830.170320
Citation: Shi Huantong, Zou Xiaobing, Zhu Xinlen, et al. Research on early stages of wire array Z-pinch[J]. High Power Laser and Particle Beams, 2018, 30: 085001. doi: 10.11884/HPLPB201830.170320

丝阵负载Z箍缩早期过程的研究

doi: 10.11884/HPLPB201830.170320
基金项目: 

国家自然科学基金项目 51177086

国家自然科学基金项目 11135007

国家自然科学基金项目 51237006

详细信息
    作者简介:

    石桓通(1991—), 男, 博士, 从事脉冲功率技术研究; shihuantong@163.com

    通讯作者:

    邹晓兵(1967—), 男, 博士, 从事脉冲功率技术及等离子体物理研究; juxb@tsinghua.edu.cn

  • 中图分类号: TL6

Research on early stages of wire array Z-pinch

  • 摘要: 利用X箍缩等离子体产生的μm级、亚ns脉冲X射线点源对双丝电爆炸过程进行了X射线背光照相,结果表明:真空环境下爆炸丝通常形成“核冕”结构,即高密度丝核表面围绕着低密度冕等离子体;随后在全局磁场驱动下,冕层将被连续剥离并向轴线汇聚,形成“先驱等离子体”,大大降低丝阵的内爆品质。针对上述问题,进一步对实现“无核丝爆”(提高丝核沉积能量实现金属丝的均匀汽化)的方法进行了研究。实验结果表明:提高驱动电流上升率以及在金属丝表面构造正向径向电场均有利于丝核沉积能量的提高。结合上述两种方法,提出了阴极串联闪络开关的电极构型,大幅度提高了丝核沉积能量:正负极性驱动电流下比能量分别提高到原来的2倍(从5.7 eV/atom到13 eV/atom)和3.5倍(3.4 eV/atom到12 eV/atom),均超过了钨丝汽化能(8.8 eV/atom),且激光干涉图像表明爆炸产物具有很高的汽化率,即实现了“无核丝爆”。
  • 图  1  PPG-1装置照片

    Figure  1.  Photography of pulsed power generator PPG-1

    图  2  PPG-1负载腔结构以及利用X-pinch对Z箍缩过程拍照的实验布置

    Figure  2.  Structure of load cavity of PPG-1 and the configuration of using X-pinch as backlighting source for wire array Z-pinch

    图  3  输出电流波形和X-pinch1、X-pinch2辐射波形

    Figure  3.  Waveforms of output current and radiation of X-pinch1 and X-pinch2

    图  4  PPG-3装置的照片

    Figure  4.  Photography of PPG-3

    图  5  储能电容充电电压60 kV时短路放电输出电流波形

    Figure  5.  Waveform of short-circuit current with 60 kV charging voltage on the energy storage capacitor

    图  6  PPG-3的负载腔结构

    Figure  6.  Structure of load cavity of PPG-3

    图  7  激光成像的光路图

    Figure  7.  Optical configuration of laser photography

    图  8  直径50 μm双钼丝Z箍缩背光图像

    Figure  8.  Backlighting image of two 50 μm-diameter molybdenum wires

    图  9  钨丝电爆炸比能量随电容充电电压的变化

    Figure  9.  Statistical relationship between specific energy of tungsten wires and charging voltage on the capacitor

    图  10  阴极加装屏蔽板的丝爆电极构型

    Figure  10.  Load configuration with shielded cathode

    图  11  金属丝表面径向电场及比能量随直径屏蔽板的变化情况

    Figure  11.  Radial electric field along the wire surface, specific energy vs different diameters of shield plate

    图  12  串联闪络开关实验中使用的三种电极构型

    Figure  12.  Three types of load configuration used in the "flashover switch related" experiments

    图  13  负极性驱动电流下三种电极构型丝爆的阴影照片和干涉照片

    Figure  13.  Laser shadowgrams and interferograms of three load configurations, taken at ~320 ns after initiation of current

    图  14  负极性驱动电流下三种电极构型丝爆的电信号波形

    Figure  14.  Electrical waveforms of the three load configurations driven by negative current pulse

    图  15  普通构型和阴极绝缘子构型径向电场计算结果

    Figure  15.  Distribution of radial electric field along wire surface of normal load and cathode-insulated load

    图  16  正极性下普通构型和阴极绝缘子构型的阴影照片及干涉照片

    Figure  16.  Laser shadowgrams and interferograms of wire explosion driven by positive current pulse

  • [1] Haines M G, Lebedev S V, Chittenden J P, et al. The past, present, and future of Z pinches[J]. Phys Plasmas, 2000, 7(52): 1672-1680.
    [2] Ryutov D D, Derzon M S, Matzen M K. The physics of fast Z pinches[J]. Rev Mod Phys, 2000, 72(1): 167-223.
    [3] Deeney C, Douglas M R, Spielman R B, et al. Enhancement of X-ray Power from a Z Pinch Using Nested-Wire Arrays[J]. Phys Rev Lett, 1998, 81(22): 4883-4886. doi: 10.1103/PhysRevLett.81.4883
    [4] Spielman R B, Deeney C, Chandler G A, et al. Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ[J]. Phys Plasmas, 1998, 5(5): 2105-2111. doi: 10.1063/1.872881
    [5] Lebedev S V, Beg F N, Bland S N, et al. Snowplow-like behavior in the implosion phase of wire array Z pinches[J]. Phys Plasmas, 2002, 9(52): 2293-2301.
    [6] Lebedev S V, Beg F N, Bland S N, et al. Effect of discrete wires on the implosion dynamics of wire array Z pinches[J]. Phys Plasmas, 2001, 8(8): 3734-3747. doi: 10.1063/1.1385373
    [7] Zhu X, Zou X, Zhang R, et al. X-ray backlighting of the initial stage of single-wire and multi-wire Z-Pinch[C]//Proc of IPMHVC. 2012: 574-577.
    [8] 赵屾, 朱鑫磊, 石桓通, 等. 用X-pinch对双丝Z箍缩进行轴向X射线背光照相[J]. 物理学报, 2015, 64(1): 201-206. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201501026.htm

    Zhao Shen, Zhu Xinlei, Shi Huantong, et al, Axial backlighting of two-wire Z-pinch using an X-pinch as an X-ray source. Acta Physica Sinica, 2015, 64(1): 201-206 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201501026.htm
    [9] Shi H, Zou X, Wang X. Effect of high-voltage electrode geometry on energy deposition into exploding wire in vacuum[J]. IEEE Trans Dielectr Electr Insul, 2017, 24(4): 2001-2005.
    [10] Shi H, Zou X, Wang X. Fully vaporized electrical explosion of bare tungsten wire in vacuum[J]. Appl Phys Lett, 2016, 109(13): 5063-929.
    [11] Sarkisov G S, Rosenthal S E, Cochrane K R, et al. Nanosecond electrical explosion of thin aluminum wires in a vacuum: Experimental and computational investigations[J]. Phys Rev E, 2005, 71: 046404.
    [12] Sarkisov G S, Struve K W, Mcdaniel D H. Effect of current rate on energy deposition into exploding metal wires in vacuum[J]. Phys Plasmas, 2004, 11(10): 4573-4581.
    [13] Tucker T J, Toth R P. A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements[R]. Sand-75-0041 Unlimited distribution, 1975.
    [14] Sarkisov G S, Struve K W, Mcdaniel D H. Effect of deposited energy on the structure of an exploding tungsten wire core in a vacuum[J]. Phys Plasmas, 2005, 12: 052702.
    [15] Lebedev S V, Savvatimskii A I. Metals during rapid heating by dense currents[J]. Sov Phys-Uspekh, 1984, 27(10): 749-771.
    [16] Lebedev S V. Electrical explosion study of certain thermophysical properties of tungsten and molybdenum near the melting point[J]. High Temp, 1971, 9(5): 845-849.
  • 加载中
图(16)
计量
  • 文章访问数:  1223
  • HTML全文浏览量:  203
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-24
  • 修回日期:  2018-04-13
  • 刊出日期:  2018-08-15

目录

    /

    返回文章
    返回