留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢及氘的宽区物态方程研究进展

刘海风 李琼 张其黎 张弓木 宋红州 赵艳红 孙博 宋海峰

刘海风, 李琼, 张其黎, 等. 氢及氘的宽区物态方程研究进展[J]. 强激光与粒子束, 2021, 33: 012003. doi: 10.11884/HPLPB202133.200137
引用本文: 刘海风, 李琼, 张其黎, 等. 氢及氘的宽区物态方程研究进展[J]. 强激光与粒子束, 2021, 33: 012003. doi: 10.11884/HPLPB202133.200137
Liu Haifeng, Li Qiong, Zhang Qili, et al. Progress on wide-range equation of state for hydrogen and deuterium[J]. High Power Laser and Particle Beams, 2021, 33: 012003. doi: 10.11884/HPLPB202133.200137
Citation: Liu Haifeng, Li Qiong, Zhang Qili, et al. Progress on wide-range equation of state for hydrogen and deuterium[J]. High Power Laser and Particle Beams, 2021, 33: 012003. doi: 10.11884/HPLPB202133.200137

氢及氘的宽区物态方程研究进展

doi: 10.11884/HPLPB202133.200137
基金项目: 科学挑战专题项目(TZ2016001);国家自然科学基金青年项目(11604018)
详细信息
    作者简介:

    刘海风(1968—),女,硕士,研究员,长期从事物态方程理论研究;liu_haifeng@iapcm.ac.cn

  • 中图分类号: O35

Progress on wide-range equation of state for hydrogen and deuterium

  • 摘要: 氢是自然界最丰富的元素,是天体物理和惯性约束聚变(ICF)研究的重要对象。简要综述了国内外氢及氘宽区物态方程研究进展,特别评述了OMEGA激光装置上的最新冲击压缩 实验和理论模型的对比分析情况。在以往数据分析评估基础上,利用改进的化学自由能模型、第一原理数值模拟结果及多参数物态方程模型,构建了氢的宽区物态方程,适用温度、密度范围分别为20~108 K,10−7~2000 g/cm3。与已有多类实验如冲击压缩实验、静高压等温线实验、声速等实验结果对比表明,新构建的氢宽区物态方程具有较高的置信度,为天体物理、惯性约束聚变、国际热核实验堆等工程物理设计提供高精度的支撑数据。氢宽区物态方程的构建及验证方法亦可适用于其同位素氘,该方法构建的氘宽区物态方程与2019年最新发表的主雨贡纽、二次冲击雨贡纽数据的吻合程度明显优于当前国外模型。指出了未来研究需要关注的状态区域。
  • 图  1  低温液氘的主雨贡纽压强-压缩比关系[33]

    Figure  1.  Pressure vs compression ratio for single-shock measurements of the principal Hugoniot of cryogenic liquid deuterium[33]

    图  2  实验与理论模型预测的低温液氘雨贡纽数据比较[34]

    Figure  2.  Summary of experimental data on the pressure-density compressibility along the cryogenic Hugoniot for D2,along with several EOS model predictions

    图  3  MFE和MP模型的压强和能量相对偏差

    Figure  3.  Relative differences of equation of state (EOS) for hydrogen between MFE and MP models

    图  4  氢的WEOS模型分区示意图

    Figure  4.  Constituents of model for hydrogen wide-range EOS (WEOS)

    图  5  光滑处理前后压强和能量的对比较

    Figure  5.  Comparison of equation of state for hydrogen before and after smoothing

    图  6  WEOS氢数据库与RPIMC数据[11]的压强和能量相对偏差

    Figure  6.  Relative differences of equation of state for hydrogen between RPIMC and WEOS

    图  7  WEOS氢数据库与DFT数据[23]的压强和能量相对偏差

    Figure  7.  Relative differences of equation of state for hydrogen between DFT and WEOS

    图  8  氢WEOS数据库与H-REOS3数据库的压强和能量相对偏差

    Figure  8.  Relative differences of equation of state for hydrogen between REOS and WEOS.

    图  9  液体氢的雨贡纽比较,REOS[13],实验(Nellis[26],Dick[31],Thiel[54],Sano[63],Holmes[64]

    Figure  9.  Comparison of Hugoniot for liquid hydrogen,REOS[13],experiment (Nellis[26],Dick[31],Thiel[54],Sano[63],Holmes[64]

    图  10  液态氢声速比较,REOS[13],实验[48, 65-66]

    Figure  10.  Comparison of sound velocities for liquid hydrogen,REOS[13],experiment[48, 65-66]

    图  11  300 K等温线,实验(Hemley[49],Loubeyre[50]

    Figure  11.  Isotherm of 300 K for hydrogen,experiment(Hemley[49],Loubeyre[50]

    图  12  冷压曲线,其他理论(Rillo[52],Kopyshev[22],Geng[53]

    Figure  12.  Cold pressure for hydrogen,theory(Rillo[52],Kopyshev[22],Geng[53]

    图  13  预压缩氢的雨贡纽理论(实线)与实验(符号)[30, 55]对比

    Figure  13.  Shock pressure vs ratio for pre-compression hydrogen:open and solid symbols are respectively the published data in Refs.[30] and [55]

    图  14  预压缩氢的雨贡纽温度(理论)与实验(符号)[55]对比

    Figure  14.  Pre-compression hydrogen shock temperature as a function of the shock pressure:solid symbols[55]

    图  15  液体氘的WEOS主雨贡纽理论与实验(Knudson[3, 56],Nellis[26],Fernandez[33],黄秀光[57])比较

    Figure  15.  Pressure vs compression ratio for the principal Hugoniot of WEOS for cryogenic liquid deuterium, experiment(Knudson[3, 56],Nellis[26],Fernandez[33],X. G. Huang[57]

    图  16  液体氘的WEOS二次冲击雨贡纽理论与实验数据[33]比较

    Figure  16.  Pressure vs compression ratio for the principal Hugoniot and re-shock of WEOS for cryogenic liquid deuterium experiment[33]

    图  17  用于宽区物态方程数据库验证的理论[11, 23, 32, 5253, 58-62]和实验[30, 49-51, 55]温度、密度状态点

    Figure  17.  Theorical[11, 23, 32, 5253, 58-62] and experimental[30, 49-51, 55] points and curves used for validation of WEOS

    表  1  OMEGA装置预压缩氢实验样品初态及不同物态方程计算结果

    Table  1.   Initioal state of pre-compression hydrogen:experimental data on OMEGA and results from different models

    shotρ0/(104 g·cm−3p0/GPap0WEOS/GPap0MP/GPap0FP/GPap0REOS/GPa
    34834881±360.310.307850.307860.285810.2794
    34835754±460.220.218110.218110.262390.2003
    361741216±190.700.702780.702680.549690.6477
    361761241±180.740.744580.744520.583910.6872
    38326576±680.130.129360.129360.268810.1210
    389911204±190.680.683380.683340.534050.6294
    38997644±590.160.158930.158930.263140.1476
    390001575±101.481.515041.567951.270301.4040
    414511561±111.441.474931.520921.232481.3660
    41458644±590.160.158930.158930.263140.1476
    43297869±370.300.298250.298250.282160.2710
    432981535±111.371.402341.437081.164431.2970
    47716644±590.160.158930.158930.263140.1476
    47719829±400.270.268000.268000.272310.2444
    52250893±350.320.317720.317720.289800.2881
    53835869±370.300.298250.298250.282160.2710
    53838644±590.160.158930.158930.263140.1476
    55003869±370.300.298250.298250.282160.2710
    563661571±101.471.503501.554381.259411.3930
    50377869±370.300.298250.298250.282160.2710
    53471644±590.160.158930.158930.263140.1476
    53472869±370.300.298250.298250.282160.2710
    53478905±340.330.327850.327850.294130.2970
    下载: 导出CSV
  • [1] McMahon J M, Morales M A, Pierleoni C, et al. The properties of hydrogen and helium under extreme conditions[J]. Rev Mod Phys, 2012, 84: 1607. doi: 10.1103/RevModPhys.84.1607
    [2] Azadi S, Foulkesw M C. Fate of density functional theory in the study of high-pressure solid hydrogen[J]. Phys Rev B, 2013, 88: 014115. doi: 10.1103/PhysRevB.88.014115
    [3] Knudson M D, Desjarlais M P. High-precision shock wave measurements of deuterium: evaluation of exchange correlation functions at the molecular-to-atomic transition[J]. Phys Rev Lett, 2017, 118: 035501. doi: 10.1103/PhysRevLett.118.035501
    [4] Stevenson D J. Interiors of the giant planets[J]. Annu Rev Earth Planet Sci, 1982, 10: 257-295. doi: 10.1146/annurev.ea.10.050182.001353
    [5] Hubbard W B, Militzer B. A preliminary Jupiter model[J]. The Astrophysical J, 2016, 820(1): 80. doi: 10.3847/0004-637X/820/1/80
    [6] Wahl S M, Hubbard W B, Militzer B, et al. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core[J]. Geophys Res Lett, 2017, 44(10): 4649. doi: 10.1002/2017GL073160
    [7] Da Silva L B, Celliers P, Collins G W, et al. Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar)[J]. Phys Rev Lett, 1997, 78: 483-486. doi: 10.1103/PhysRevLett.78.483
    [8] Meezan N B, Edwards M J, Hurricane O A, et al. Indirect drive ignition at the National Ignition Facility[J]. Plasma Phys Controlled Fusion, 2017, 59: 014021. doi: 10.1088/0741-3335/59/1/014021
    [9] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11: 339. doi: 10.1063/1.1578638
    [10] Noh J, Fulgueras A M, Sebastian L J, et al. Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using Aspen Plus simulator[J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 1-8. doi: 10.1016/j.jiec.2016.07.053
    [11] Hu S, Militzer B, Goncharov V, et al. First-principles equation-of-state table of deuterium for inertial confinement fusion applications[J]. Phys Rev B, 2011, 84: 224109. doi: 10.1103/PhysRevB.84.224109
    [12] Liu H F, Song H F, Zhang Q L, et al. Validation for equation of state in wide regime: Copper as prototype[J]. Matter and Radiation at Extremes, 2016, 1: 123-131. doi: 10.1016/j.mre.2016.03.002
    [13] Becker A, Lorenzen W, Fortney J J, et al. Ab initio equations of state for hydrogen (H-REOS.3) and helium (He-REOS.3) and their implications for the interior of brown dwarfs[J]. Astrophys J Supp Ser, 2014, 215: 21. doi: 10.1088/0067-0049/215/2/21
    [14] Morales M A, Benedict L X, Clark D S, et al. Ab initio calculations of the equation of state of hydrogen in a regime relevant for inertial fusion applications[J]. High Energy Density Phys, 2012, 8: 5-12. doi: 10.1016/j.hedp.2011.09.002
    [15] More R M, Warren K H, Young D A, et al. A new quotidian equation of state (QEOS) for hot dense matter[J]. Phys Fluids, 1988, 31: 3059. doi: 10.1063/1.866963
    [16] Kerley G I. Equations of state for hydrogen and deuterium[R]. SAND2003-3613, 2003.
    [17] Kerley G I. A theoretical equation of state for deuterium[R]. LA-4776, 1972.
    [18] Nettelmann N, Becker A, Holst B, et al. Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2)[J]. Astrophys J, 2012, 750: 52. doi: 10.1088/0004-637X/750/1/52
    [19] Saumon D. A new tabular EOS for hydrogen isotopes[J] AIP Conf Proc,2007, 955: 101.
    [20] Saumon D. Update to SCvH95 using statistical mechanics to produce a fluid hydrogen free energy[R]. LA-UR-13-20032, 2012.
    [21] Caillabet L, Mazevet S, Loubeyre P. Multiphase equation of state of hydrogen from ab initio calculations in the range 0.2 to 5 g/cc up to 10 eV[J]. Phys Rev B, 2011, 83: 094101. doi: 10.1103/PhysRevB.83.094101
    [22] Trunin R F, Urlin V D, Medvedev A B. Dynamic compression of hydrogen isotopes at megabar pressures[J]. Physics –Uspekhi, 2010, 53(6): 577-593. doi: 10.3367/UFNe.0180.201006d.0605
    [23] Wang C, Zhang P. Wide range equation of state for fluid hydrogen from density function theory[J]. Phys Plasmas, 2013, 20: 092703. doi: 10.1063/1.4821839
    [24] Correa A A, Benedict L X, Young D A, et al. First-principles multiphase equation of state of carbon under extreme conditions[J]. Phys Rev B, 2008, 78: 024101.
    [25] Hu S X, Goncharov V N, Boehly T R, et al. Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designs[J]. Phys Plasmas, 2015, 22: 056304. doi: 10.1063/1.4917477
    [26] Nellis W J, Mitchell A C, van Thiel M, et al. Equation-of-state data for molecular hydrogen and deuterium at shock pressures in the range 2-76 GPa (20-760 kbar)[J]. J Chem Phys, 1983, 79: 1480. doi: 10.1063/1.445938
    [27] Knudson M D, Hanson D H, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Phys Rev Lett, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501
    [28] Boriskov G V, Bykov A I, Il'kaev R I, et al. Shock compression of liquid deuterium up to 109 GPa[J]. Phys Rev B, 2005, 71: 092104. doi: 10.1103/PhysRevB.71.092104
    [29] Hicks D G, Boehly T R, Celliers P M, et al. Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa[J]. Phys Rev B, 2009, 79: 014112. doi: 10.1103/PhysRevB.79.014112
    [30] Loubeyre P, Brygoo S, Eggert J H, et al. Extended data set for the equation of state of warm dense hydrogen isotopes[J]. Phys Rev B, 2012, 86: 144115. doi: 10.1103/PhysRevB.86.144115
    [31] Dick R D, Kerley G I. Shock compression data for liquids Ⅱ–Condensed hydrogen and deuterium[J]. J Chem Phys, 1980, 73: 5264. doi: 10.1063/1.439955
    [32] 刘海风, 张弓木, 张其黎, 等. 氢氘物态方程研究进展[J]. 高压物理学报, 2018, 32:050101. (Liu Haifeng, Zhang Gongmu, Zhang Qili, et al. Progress on equation of state of hydrogen and deuterium[J]. Chinese Journal of High Pressure Physics, 2018, 32: 050101
    [33] Fernandez-Pañella A, Millot M, Fratandon D E, et al. Shock compression of liquid deuterium up to 1 TPa[J]. Phys Rev Lett, 2019, 122: 255702. doi: 10.1103/PhysRevLett.122.255702
    [34] Fratanduono D E, Millot M, Fernandez Pañella A, et al. Measurement of the sound speed in dense fluid deuterium along the cryogenic liquid Hugoniot[J]. Phys Plasmas, 2019, 26: 012710. doi: 10.1063/1.5053994
    [35] 李琼, 刘海风, 张弓木, 等. 模拟退火算法在化学自由能模型中的应用[J]. 计算物理, 2019, 36(3):259-264. (Li Qiong, Liu Haifeng, Zhang Gongmu, et al. Application of simulated annealing method in chemical free energy model[J]. Chinese Journal of Computational Physics, 2019, 36(3): 259-264
    [36] 李琼, 刘海风, 张弓木. 基于化学自由能模型的氢的状态方程与压致离化研究[R]. GFI-0607-04, 2017.

    Li Qiong, Liu Haifeng, Zhang Gongmu. The equation of state and pressure dissociation of hydrogen from the chemical free energy model[R]. GFI-0607-04, 2017
    [37] 刘海风, 张广才. 液氘的分子动力学研究[R]. GF02-035-01, 2002.

    Liu Haifeng, Zhang Guangcai. The simulation of molecular dynamic for liquid deuterium[R]. GF02-035-01, 2002
    [38] 张其黎, 张弓木, 刘海风. 氢、氘状态方程第一原理分子动力学方法研究[R]. GFI-0412-01, 2012.

    Zhang Qili, Zhang Gongmu, Liu Haifeng. The first principle molecular dynamics study the equation of states for hydrogen and deuterium[R]. GFI-0412-01, 2012
    [39] 张其黎, 刘海风, 张弓木. 氘氦混合物状态方程研究[R]. GFI-0412-02, 2012.

    Zhang Qili, Liu Haifeng, Zhang Gongmu. The study of the equation of states for deuterium and helium mixture. GFI-0412-02, 2012
    [40] 张其黎, 刘海风, 李琼, 等. 氢状态方程的路径积分蒙特卡洛研究[J]. 计算物理, 2019, 36(4):379-385. (Zhang QiLi, Liu Haifeng, Li Qiong, et al. Equations of state of hydrogen studied by path integral monte carlo method[J]. Chinese Journal of computational physicse, 2019, 36(4): 379-385
    [41] 张其黎. 氢状态方程的理论模型研究[R]. GFI-0611-04, 2018.

    Zhang Qili. The study of theory models of the equation of states for hydrogen[R], GFI-0611-04, 2018
    [42] 张其黎, 马桂存, 刘海风. 液氘的QEOS状态方程研究[R]. GFI-0089-01, 2009.

    Zhang Qili, Ma Guicun, Liu Haifeng, The quotidian equation of state (QEOS) for liquid deuterium[R]. GFI-0089-01, 2009
    [43] Span R, Lemmon E W, Jacobsen R T, et al. A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa[J]. J Phys Chem Ref Data, 2000, 29: 1361. doi: 10.1063/1.1349047
    [44] Leachman J W, Jacobsen R T, Penoncello S G, et al. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen[J]. J Phys Chem Ref Data, 2006, 38(3): 721-748.
    [45] Richardson A, Leachman J W, Lemmon E W. Fundamental equation of state for deuterium[J]. J Phys Chem Ref Data, 2013, 43(1): 013103.
    [46] Richardson I A, Leachman J W, Lemmon E W. Erratum: ‘‘Fundamental equation of state for deuterium’’[J]. J Phys Chem Ref Data, 2018, 47: 049901. doi: 10.1063/1.5016519
    [47] 耿华运, 孙毅. 氢的高压奇异结构与金属化[J]. 高压物理学报, 2018, 32:020101. (Geng Huayun, Sun Yi. On the novel structure and metallization of hydrogen under high pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32: 020101
    [48] Duffy T S, Vos W L, Zha C S, et al. Sound velocities in dense hydrogen and the interior of Jupiter[J]. Science, 1994, 263: 1590. doi: 10.1126/science.263.5153.1590
    [49] Hemley R J, Mao H K. Equation of state of solid hrdrogen and deuterium from single-crystal X-ray diffraction to 26.5 GPa[J]. Phys Rev B, 1990, 42: 106458.
    [50] Loubeyre P, LeToullec R, Häusermann D, et al. X-ray diffraction and equation of state of hydrogen at megabar pressures[J]. Nature, 1996, 383: 702. doi: 10.1038/383702a0
    [51] Hemley R J, Mao H K, Goncharov A F, et al. Synchrotron infrared spectroscopy to 0.15 eV of H2 and D2 at megabar pressures[J]. Phys Rev Lett, 1996, 76: 1667. doi: 10.1103/PhysRevLett.76.1667
    [52] Rillo G, Morales M A, Ceperley D M, et al. Coupled electron-ion Monte Carlo simulation of hydrogen molecular crystals[J]. Journal of Chemical Physics, 2018, 148: 102314. doi: 10.1063/1.5001387
    [53] Geng H Y, Song H X, Li J F, et al. High-pressure behavior of dense hydrogen up to 3.5 TPa from density functional theory calculations[J]. J Appl Phys, 2012, 111: 063510. doi: 10.1063/1.3694793
    [54] Van Thiel M, Alder B J. Shock compression of liquid hydrogen[J]. Molecular Physics, 1966, 10(5): 427-435. doi: 10.1080/00268976600100551
    [55] Brygoo S, Millot M, Loubeyre P, et al. Analysis of laser shock experiments on precompressed samples using a quartz reference and application to warm dense hydrogen and helium[J]. Journal of Applied Physics, 2015, 118: 195901. doi: 10.1063/1.4935295
    [56] Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Phys Rev B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
    [57] 贾果, 黄秀光, 谢志勇, 等. 液氘状态方程实验数据测量[J]. 物理学报, 2015, 64:166401. (Jia Guo, Huang Xiuguang, Xie Zhiyong, et al. Experimental measurement of liquid deuterium equation of state data[J]. Acta Physica Sinica, 2015, 64: 166401 doi: 10.7498/aps.64.166401
    [58] Militzer B, Ceperley D M. Path integral Monte Carlo simulation of the low-density hydrogen plasma[J]. Phys Rev E, 1996, 63: 066404.
    [59] Collins L A, Bickham S R, Kress J D. Dynamical and optical properties of warm dense hydrogen[J]. Phys Rev B, 2001, 63: 184110. doi: 10.1103/PhysRevB.63.184110
    [60] Morales M A, Pierleoni C , Ceperley D M. Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations[J]. Phys Rev E, 2010, 81: 021202.
    [61] Pierleoni C, Ceperley D M, Holzmann M. Coupled electron-ion Monte Carlo calculations of dense metallic hydrogen[J]. Phys Rev Lett, 2004, 93: 146402. doi: 10.1103/PhysRevLett.93.146402
    [62] Filinov V S, Bonitz M, Ebeling W, et al. Thermodynamics of hot dense H-plasmas: path integral Monte Carlo simulations and analytical approximations[J]. Plasma Phys Control Fusion, 2001, 43: 743-759. doi: 10.1088/0741-3335/43/6/301
    [63] Sano T, Ozaki N, Sakaiya T, et al. Laser-shock compression and Hugoniot measurements of liquid hydrogen to 55 GPa[J]. Phys Rev B, 2011, 83: 054117. doi: 10.1103/PhysRevB.83.054117
    [64] Holmes N C, Ross M, Nellis W J. Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen[J]. Phys Rev B, 1995, 52: 15835. doi: 10.1103/PhysRevB.52.15835
    [65] Brody E B, Shimizu H, Mao H K, et al. Acoustic velocity and refractive index of fluid hydrogen and deuterium at high pressures[J]. J Appl Phys, 1981, 52: 3583. doi: 10.1063/1.329141
    [66] Shimizu H, Brody E M, Mao H K, et al. Brillouin measurements of solid n-H2 and n-D2 to 200 kbar at room temperature[J]. Phys Rev Lett, 1981, 47: 128. doi: 10.1103/PhysRevLett.47.128
    [67] 何以广, 王钊, 汤秀章. 低Z流体的单次冲击波压缩极限[J]. 强激光与粒子束, 2010, 22(10):2432-2436. (He Yiguang, Wang Zhao, Tang Xiuzhang. Single-shock compression limit of low-Z fluids[J]. High Power Laser and Particle Beams, 2010, 22(10): 2432-2436 doi: 10.3788/HPLPB20102210.2432
    [68] 王聪, 贺贤土, 张平. 氢及其同位素宽区状态方程的核量子效应[J]. 强激光与粒子束, 2015, 27:032008. (Wang Cong, He Xiantu, Zhang Ping. Quantum nuclear effects in the wide range equations of states for hydrogen and its isotopes[J]. High Power Laser and Particle Beams, 2015, 27: 032008 doi: 10.11884/HPLPB201527.032008
    [69] Gregoryanz E, Ji Cheng, Dalladay-Simpson P, et al. Everything you always wanted to know about metallic hydrogen but were afraid to ask[J]. Matter and Radiation at Extremes, 2020, 5: 038101. doi: 10.1063/5.0002104
    [70] Ji Cheng, Li Bing, Liu Wenjun, et al. Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen[J]. Matter and Radiation at Extremes, 2020, 5: 038401. doi: 10.1063/5.0003288
    [71] Zeldovich Y B, Raizer Y R. Physics of shock waves and high temperature hydrodynamic phenomena[M]. Cambridge: Cambridge University Press, 1966.
    [72] Nellis W J. Shock compression of deuterium near 100 GPa pressures[J]. Phys Rev Lett, 2002, 89: 165502. doi: 10.1103/PhysRevLett.89.165502
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  1301
  • HTML全文浏览量:  475
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 修回日期:  2020-07-07
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回