留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中红外超快光纤激光器研究进展

侯绍冬 闫培光 阮双琛

侯绍冬, 闫培光, 阮双琛. 中红外超快光纤激光器研究进展[J]. 强激光与粒子束, 2021, 33: 111005. doi: 10.11884/HPLPB202133.210320
引用本文: 侯绍冬, 闫培光, 阮双琛. 中红外超快光纤激光器研究进展[J]. 强激光与粒子束, 2021, 33: 111005. doi: 10.11884/HPLPB202133.210320
Hou Shaodong, Yan Peiguang, Ruan Shuangchen. Recent advances in mid-infrared ultrafast fiber laser technology[J]. High Power Laser and Particle Beams, 2021, 33: 111005. doi: 10.11884/HPLPB202133.210320
Citation: Hou Shaodong, Yan Peiguang, Ruan Shuangchen. Recent advances in mid-infrared ultrafast fiber laser technology[J]. High Power Laser and Particle Beams, 2021, 33: 111005. doi: 10.11884/HPLPB202133.210320

中红外超快光纤激光器研究进展

doi: 10.11884/HPLPB202133.210320
基金项目: 国家自然科学基金重点项目(61935014); 国家自然科学基金(61775146,61975136)
详细信息
    作者简介:

    侯绍冬,hsd@szu.edu.cn

    阮双琛,scruan@sztu.edu.cn

    通讯作者:

    闫培光,yanpg@szu.edu.cn

  • 中图分类号: O432.1+2

Recent advances in mid-infrared ultrafast fiber laser technology

  • 摘要:

    中红外波段覆盖重要的分子吸收区与多个大气透射窗口,该波段的超快激光器在多个领域具有广泛应用。基于光纤的中红外超快激光器近年来在激光发射与传输、超快脉冲产生与应用等方面发展迅速,为中红外波段超快激光开辟了新的研究手段与应用领域。综述了近十年来中红外超快光纤激光器的发展概况,介绍了近年来中红外波段的激光传输与增益手段。其中,重点回顾了近年来中红外超快脉冲产生技术的研究进展及其代表性工作,包括非线性偏振旋转、可饱和吸收体以及频移反馈锁模技术。此外,还介绍了中红外超快脉冲的压缩放大技术与超连续谱产生应用。最后讨论并总结了中红外超快光纤激光器面临的挑战与可能的发展方向。

  • 图  1  (a) 分子指纹谱[1];(b) 大气传输窗口

    Figure  1.  (a) Molecules absorption spectrum[1] and (b) atmospheric transmission windows

    图  2  多种稀土离子的能级(a-f)与发射谱(g)[10-11]

    Figure  2.  The energy levels of different rare-earth ions (a-f) and their emission spectra[10-11]

    图  3  光纤激光器锁模方式。其中 (a-c) 已实现中红外锁模

    Figure  3.  Methods for fiber laser mode-locking. The methods (a-c) have successfully mode-locked the mid-infrared fiber laser

    图  4  (a-d) 2.8 μm非线性偏振旋转锁模[29]。(a) 系统结构;(b) 直接输出光谱与重建光谱;(c) 自相关迹;(d) 二次谐波信号光谱;(e-g) 3.5 μm非线性偏振旋转锁模光纤激光器[32]。(e) 系统结构;(f) 输出光谱;(g) 自相关迹

    Figure  4.  (a-d) 2,8 μm nonlinear polarization rotation based mode-locking[29]. (a) Experimental configuration; (b) direct and reconstructed output spectra; (c)autocorrelation trace; (d) second harmonic signal spectrum. (e-g) 3.5 μm nonlinear polarization rotation based mode-locking[32]. (e) Experimental setup; (f) pulse spectrum; (g) autocorrelation trace

    图  5  基于可饱和吸收体的中红外锁模光纤激光器结构及其输出脉宽和光谱。从左至右依次为激光器结构、自相关迹以及输出光谱

    Figure  5.  Mid-infrared ultrafast fiber lasers mode-locked by saturable absorbers. Left to right column: setup, autocorrelation trace and spectra

    图  6  典型基于可饱和吸收体的中红外调Q光纤激光器

    Figure  6.  Typical Q-switched fiber laser based on saturable absorbers

    图  7  频移反馈锁模技术[72]。包含泵浦-输出曲线、输出光谱、调 Q 波形、锁模波形、自相关迹和射频谱

    Figure  7.  Frequency shifted feedback mode-locking[72]. including pump-output power curve, output spectrum, Q-switched waveform, mode-locked waveform, autocorrelation trace and radio frequency spectrum

    图  8  (a-d)基于非线性压缩的70 fs脉冲产生[34]。(a) 系统结构;(b) 输出光谱;(c) 压缩前的自相关迹;(d) 压缩后的自相关迹。(e-h) 基于啁啾脉冲放大和高阶孤子压缩的15.9 fs脉冲产生。(e) 系统结构;(f) 种子光谱和放大后的脉冲光谱;(g) 压缩后脉冲光谱;(h) 恢复的脉冲波形及其相位

    Figure  8.  (a-d) 70 fs pulses generation via nonlinear compression[34]. (a) Experimental setup; (b) output spectra; (c) autocorrelation trace before compression; (d) autocorrelation trace after compression. (e-h) 15.9 fs pulses generation via chirped pulse amplification and high order soliton self-compression[33]. (e) Experimental setup; (f) spectra of seed and amplified pulse; (g) spectrum of compressed pulse; (h) retrieved temporal intensity and phase of compressed pulse

    图  9  中红外超快脉冲直接泵浦的超连续谱[4]。(a) 系统结构,(b) 不同峰值功率泵浦下的输出结果

    Figure  9.  Mid-infrared supercontinuum generation directly pumped by mid-infrared ultrafast pulse[4]. (a) Experimental setup; (b) supercontinuum spectra pumped by different peak power

    表  1  中红外被动调Q光纤激光器性能比较

    Table  1.   Comparison of results of mid-infrared fiber lasers Q-switched by various saturable absorbers

    saturable absorberdoped rare-earth elementswavelenth/nmduration/nsfrequency/kHzSNR/dBpower/mWreference
    graphene Er3+ 2783 1670 37 30 62 [53]
    SESAM Er3 2791 1680 47.6 50 317 [54]
    Bi2Te3 Ho3+ 2979.9 1370 81.96 37.4 327.4 [55]
    BP Er3+ 2779 1180 63 485 [56]
    SESAM Er3+ 2783 315 146.3 1010 [57]
    Bi2Te3 Er3+ 2791 1300 92 36 856 [58]
    WS2 Ho3+/Pr3+ 2867 1670 131.6 40.5 48.4 [59]
    Fe2+:ZnSe Er3+ 2779 742 102.9 41 822 [60]
    Fe2+:ZnSe Er3+ 2780 430 160.8 39 873 [61]
    GNS Er3+ 2800 536 125 44 454 [62]
    SWCNT Ho3+/Pr3+ 2837~2892 1460 131.6 40 55.8 [63]
    PbS Dy3+ 2710~3080 795 166.8 33 252.7 [64]
    MoS2 Er3+ 2754 806 70 40 140 [65]
    MXene Er3+ 2798 730 99.5 33.1 80 [66]
    Sb Er3+ 2800 1700 28.8 36.2 59 [52]
    PtSe2 Ho3+/Pr3+ 2865 620 238.1 30 93 [67]
    Fe3O4 Dy3+ 2931 1250 123 35 111 [68]
    InSe Er3+ 2791 423 253 43.7 712 [69]
    SNR: single-to-noise ratio; BP: black phosphorus; SWCNT: single-walled carbon nanotube
    下载: 导出CSV
  • [1] Popa D, Udrea F. Towards integrated mid-infrared gas sensors[J]. Sensors, 2019, 19: 2076. doi: 10.3390/s19092076
    [2] Jacques S L. Optical properties of biological tissues: a review[J]. Physics in Medicine & Biology, 2013, 58(11): R37-R61.
    [3] Chang Zenghu, Corkum P B, Leone S R. Attosecond optics and technology: progress to date and future prospects [Invited][J]. Journal of the Optical Society of America B, 2016, 33(6): 1081-1097. doi: 10.1364/JOSAB.33.001081
    [4] Hudson D D, Antipov S, Li Lizhu, et al. Toward all-fiber supercontinuum spanning the mid-infrared[J]. Optica, 2017, 4(10): 1163-1166. doi: 10.1364/OPTICA.4.001163
    [5] Layne C B, Lowdermilk W H, Weber M J. Multiphonon relaxation of rare-earth ions in oxide glasses[J]. Physical Review B, 1977, 16(1): 10-20. doi: 10.1103/PhysRevB.16.10
    [6] Wang Zefeng, Yu Fei, Wadsworth W J, et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering[J]. Laser Physics Letters, 2014, 11: 105807. doi: 10.1088/1612-2011/11/10/105807
    [7] Ding Wei, Wang Yingying, Gao Shoufei, et al. Recent progress in low-loss hollow-core anti-resonant fibers and their applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26: 4400312.
    [8] Cui Yulong, Huang Wei, Wang Zefeng, et al. 4.3 μm fiber laser in CO2-filled hollow-core silica fibers[J]. Optica, 2019, 6(8): 951-954. doi: 10.1364/OPTICA.6.000951
    [9] Désévédavy F, Strutynski C, Lemière A, et al. Review of tellurite glasses purification issues for mid-IR optical fiber applications[J]. Journal of the American Ceramic Society, 2020, 103(8): 4017-4034. doi: 10.1111/jace.17078
    [10] Wang W C, Zhou B, Xu S H, et al. Recent advances in soft optical glass fiber and fiber lasers[J]. Progress in Materials Science, 2019, 101: 90-171. doi: 10.1016/j.pmatsci.2018.11.003
    [11] Sojka L, Tang Z, Furniss D, et al. Mid-infrared emission in Tb3+-doped selenide glass fiber[J]. Journal of the Optical Society of America B, 2017, 34(3): A70-A79. doi: 10.1364/JOSAB.34.000A70
    [12] Maes F, Fortin V, Poulain S, et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 2018, 5(7): 761-764. doi: 10.1364/OPTICA.5.000761
    [13] He Huiyu, Jia Zhixu, Jia Shijie, et al. Ho3+/Pr3+ co-doped AlF3 based glass fibers for efficient ~2.9 μm lasers[J]. IEEE Photonics Technology Letters, 2020, 32(23): 1489-1492.
    [14] Bao Qiaoliang, Zhang Han, Wang Yu, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083. doi: 10.1002/adfm.200901007
    [15] Fermann M E, Andrejco M J, Silberberg Y, et al. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber[J]. Optics Letters, 1993, 18(11): 894-896. doi: 10.1364/OL.18.000894
    [16] Sabert H, Brinkmeyer E. Pulse generation in fiber lasers with frequency shifted feedback[J]. Journal of Lightwave Technology, 1994, 12(8): 1360-1368. doi: 10.1109/50.317522
    [17] Doran N J, Wood D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1): 56-58. doi: 10.1364/OL.13.000056
    [18] Fermann M E, Haberl F, Hofer M, et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 1990, 15(13): 752-754. doi: 10.1364/OL.15.000752
    [19] Winful H G, Walton D T. Passive mode locking through nonlinear coupling in a dual-core fiber laser[J]. Optics Letters, 1992, 17(23): 1688-1690. doi: 10.1364/OL.17.001688
    [20] Kutz J N, Sandstede B. Theory of passive harmonic mode-locking using waveguide arrays[J]. Optics Express, 2008, 16(2): 636-650. doi: 10.1364/OE.16.000636
    [21] Proctor J L, Kutz J N. Passive mode-locking by use of waveguide arrays[J]. Optics Letters, 2005, 30(15): 2013-2015. doi: 10.1364/OL.30.002013
    [22] Wang Leilei, Zeng Jianghui, Zhu Liang, et al. All-optical switching in long-period fiber grating with highly nonlinear chalcogenide fibers[J]. Applied Optics, 2018, 57(34): 10044-10050. doi: 10.1364/AO.57.010044
    [23] Mamyshev P V. All-optical data regeneration based on self-phase modulation effect[C]//Proceedings of the 24th European Conference on Optical Communication. Madrid: IEEE, 1998: 475-476.
    [24] Liu Wu, Liao Ruoyu, Zhao Jun, et al. Femtosecond Mamyshev oscillator with 10-MW-level peak power[J]. Optica, 2019, 6(2): 194-197. doi: 10.1364/OPTICA.6.000194
    [25] Chen Tao, Zhang Qiaoli, Zhang Yaping, et al. All-fiber passively mode-locked laser using nonlinear multimode interference of step-index multimode fiber[J]. Photonics Research, 2018, 6(11): 1033-1039. doi: 10.1364/PRJ.6.001033
    [26] Zhao Kangjun, Li Yan, Xiao Xiaosheng, et al. Nonlinear multimode interference-based dual-color mode-locked fiber laser[J]. Optics Letters, 2020, 45(7): 1655-1658. doi: 10.1364/OL.388314
    [27] Li Huanhuan, Hu Fangming, Tian Ying, et al. Continuously wavelength-tunable mode-locked Tm fiber laser using stretched SMF-GIMF-SMF structure as both saturable absorber and filter[J]. Optics Express, 2019, 27(10): 14437-14446. doi: 10.1364/OE.27.014437
    [28] Hofer M, Fermann M E, Haberl F, et al. Mode locking with cross-phase and self-phase modulation[J]. Optics Letters, 1991, 16(7): 502-504. doi: 10.1364/OL.16.000502
    [29] Duval S, Bernier M, Fortin V, et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2015, 2(7): 623-626. doi: 10.1364/OPTICA.2.000623
    [30] Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 2015, 40(18): 4226-4228. doi: 10.1364/OL.40.004226
    [31] Wang Yuchen, Jobin F, Duval S, et al. Ultrafast Dy3+: fluoride fiber laser beyond 3 μm[J]. Optics Letters, 2019, 44(2): 395-398. doi: 10.1364/OL.44.000395
    [32] Bawden N, Henderson-Sapir O, Jackson S D, et al. Ultrafast 3.5 µm fiber laser[J]. Optics Letters, 2021, 46(7): 1636-1639. doi: 10.1364/OL.418162
    [33] Huang J, Pang M, Jiang F, et al. Sub-two-cycle octave-spanning mid-infrared fiber laser[J]. Optica, 2020, 7(6): 574-579. doi: 10.1364/OPTICA.389143
    [34] Woodward R I, Hudson D D, Fuerbach A, et al. Generation of 70-fs pulses at 2.86 μm from a mid-infrared fiber laser[J]. Optics Letters, 2017, 42(23): 4893-4896. doi: 10.1364/OL.42.004893
    [35] Qin Zhipeng, Xie Guoqiang, Gu Hongan, et al. Mode-locked 2.8-µm fluoride fiber laser: from soliton to breathing pulse[J]. Advanced Photonics, 2019, 1: 065001.
    [36] Huang J, Pang M, Jiang X, et al. Route from single-pulse to multi-pulse states in a mid-infrared soliton fiber laser[J]. Optics Express, 2019, 27(19): 26392-26404. doi: 10.1364/OE.27.026392
    [37] Qin Zhipeng, Xie Guoqiang, Zhao Chujun, et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 2016, 41(1): 56-59. doi: 10.1364/OL.41.000056
    [38] Zhu Gongwen, Zhu Xiushan, Wang Fengqiu, et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 2016, 28(1): 7-10. doi: 10.1109/LPT.2015.2478836
    [39] Zhu Chunhui, Wang Chunhui, Meng Yafei, et al. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions[J]. Nature Communications, 2017, 8: 14111. doi: 10.1038/ncomms14111
    [40] Guo Chunyu, Wei Jincheng, Yan Peiguang, et al. Mode-locked fiber laser at 2.8 μm using a chemical-vapor-deposited WSe2 saturable absorber mirror[J]. Applied Physics Express, 2020, 13: 012013. doi: 10.7567/1882-0786/ab6031
    [41] Tang Pinghua, Qin Zhipeng, Liu Jun, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 4855-4858. doi: 10.1364/OL.40.004855
    [42] Selden A C. Pulse transmission through a saturable absorber[J]. British Journal of Applied Physics, 1967, 18(6): 743-748. doi: 10.1088/0508-3443/18/6/306
    [43] Matsuda Y, Tahir-Kheli J, Goddard III W A. Definitive band gaps for single-wall carbon nanotubes[J]. The Journal of Physical Chemistry Letters, 2010, 1(19): 2946-2950. doi: 10.1021/jz100889u
    [44] Wang Shuxian, Yu Haohai, Zhang Huaijin, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544. doi: 10.1002/adma.201306322
    [45] Xu Yijun, Shi Zhe, Shi Xinyao, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications[J]. Nanoscale, 2019, 11(31): 14491-14527. doi: 10.1039/C9NR04348A
    [46] Qin Zhipeng, Xie Guoqiang, Ma Jingui, et al. 2.8 μm all-fiber Q-switched and mode-locked lasers with black phosphorus[J]. Photonics Research, 2018, 6(11): 1074-1078. doi: 10.1364/PRJ.6.001074
    [47] Bianchi V, Carey T, Viti L, et al. Terahertz saturable absorbers from liquid phase exfoliation of graphite[J]. Nature Communications, 2017, 8: 15763. doi: 10.1038/ncomms15763
    [48] Luo Hongyu, Li Siqing, Li Xiaodong, et al. Unlocking the ultrafast potential of gold nanowires for mode-locking in the mid-infrared region[J]. Optics Letters, 2021, 46(7): 1562-1565. doi: 10.1364/OL.419060
    [49] Li Jianfeng, Hudson D D, Liu Yong, et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 2012, 37(18): 3747-3749. doi: 10.1364/OL.37.003747
    [50] Hönninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. Journal of the Optical Society of America B, 1999, 16(1): 46-56. doi: 10.1364/JOSAB.16.000046
    [51] Schibli T R, Thoen E R, Kärtner F X, et al. Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption[J]. Applied Physics B, 2000, 70(1): S41-S49.
    [52] Wang Jintao, Wei Jincheng, Liu Wenjun, et al. 2.8 µm passively Q-switched Er: ZBLAN fiber laser with an Sb saturable absorber mirror[J]. Applied Optics, 2020, 59(29): 9165-9168. doi: 10.1364/AO.402227
    [53] Wei Chen, Zhu Xiushan, Wang F, et al. Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser[J]. Optics Letters, 2013, 38(17): 3233-3236. doi: 10.1364/OL.38.003233
    [54] Li J F, Luo H Y, He Y L, et al. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser[J]. Laser Physics Letters, 2014, 11: 065102. doi: 10.1088/1612-2011/11/6/065102
    [55] Li Jianfeng, Luo Hongyu, Wang Lele, et al. 3-µm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Optics Letters, 2015, 40(15): 3659-3662. doi: 10.1364/OL.40.003659
    [56] Qin Zhipeng, Xie Guoqiang, Zhang Han, et al. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 µm[J]. Optics Express, 2015, 23(19): 24713-24718. doi: 10.1364/OE.23.024713
    [57] Shen Yanlong, Wang Yishan, Luan Kunpeng, et al. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 2016, 6: 26659. doi: 10.1038/srep26659
    [58] Tang Pinghua, Wu Man, Wang Qingkai, et al. 2.8-μm Pulsed Er3+: ZBLAN fiber laser modulated by topological insulator[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1573-1576. doi: 10.1109/LPT.2016.2555989
    [59] Wei Chen, Luo Hongyu, Zhang Han, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 2016, 13: 105108. doi: 10.1088/1612-2011/13/10/105108
    [60] Zhang Tao, Feng Guoying, Zhang Hong, et al. 2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+: ZnSe film[J]. Laser Physics Letters, 2016, 13: 075102. doi: 10.1088/1612-2011/13/7/075102
    [61] Ning Shougui, Feng Guoying, Dai Shenyu, et al. Mid-infrared Fe2+: ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser[J]. AIP Advances, 2018, 8: 025121. doi: 10.1063/1.5012847
    [62] Yang Lingling, Kang Zhe, Huang Bin, et al. Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser[J]. Optics Letters, 2018, 43(21): 5459-5462. doi: 10.1364/OL.43.005459
    [63] Lü Yanjia, Wei Chen, Zhang Han, et al. Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber[J]. Photonics Research, 2019, 7(1): 14-18. doi: 10.1364/PRJ.7.000014
    [64] Luo Hongyu, Li Jianfeng, Gao Ying, et al. Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 µm using PbS nanoparticles[J]. Optics Letters, 2019, 44(9): 2322-2325. doi: 10.1364/OL.44.002322
    [65] Wang Shiwei, Tang Yulong, Yang Jianlong, et al. MoS2 Q-switched 2.8 μm Er: ZBLAN fiber laser[J]. Laser Physics, 2019, 29: 025101. doi: 10.1088/1555-6611/aaf642
    [66] Yi Jun, Du Lin, Li Jie, et al. Unleashing the potential of Ti2CTx MXene as a pulse modulator for mid-infrared fiber lasers[J]. 2D Materials, 2019, 6: 045038. doi: 10.1088/2053-1583/ab39bc
    [67] Wei Chen, Chi Hao, Jiang Shurong, et al. Long-term stable platinum diselenide for nanosecond pulse generation in a 3-µm mid-infrared fiber laser[J]. Optics Express, 2020, 28(22): 33758-33766. doi: 10.1364/OE.410110
    [68] Yang Jian, Hu Jiyi, Luo Hongyu, et al. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 µm[J]. Photonics Research, 2020, 8(1): 70-77. doi: 10.1364/PRJ.8.000070
    [69] Chen Tenghui, Li Zhongjun, Zhang Chunxiang, et al. Indium selenide for Q-switched pulse generation in a mid-infrared fiber laser[J]. Journal of Materials Chemistry C, 2021, 9(18): 5893-5898. doi: 10.1039/D1TC00727K
    [70] Sousa J M, Okhotnikov O G. Short pulse generation and control in Er-doped frequency-shifted-feedback fibre lasers[J]. Optics Communications, 2000, 183(1/4): 227-241.
    [71] Hu T, Hudson D D, Jackson S D. FM-mode-locked fiber laser operating at 2.9 μm[C]//Proceedings of 2013 Conference on Lasers and Electro-Optics Pacific Rim. Kyoto: IEEE, 2013: 1-2.
    [72] Woodward R I, Majewski M R, Jackson S D. Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 μm[J]. APL Photonics, 2018, 3: 116106. doi: 10.1063/1.5045799
    [73] Majewski M R, Woodward R I, Jackson S D. Ultrafast mid-infrared fiber laser mode-locked using frequency-shifted feedback[J]. Optics Letters, 2019, 44(7): 1698-1701. doi: 10.1364/OL.44.001698
    [74] Henderson-Sapir O, Bawden N, Majewski M R, et al. Mode-locked and tunable fiber laser at the 3.5 µm band using frequency-shifted feedback[J]. Optics Letters, 2020, 45(1): 224-227. doi: 10.1364/OL.45.000224
    [75] Brabec T, Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics[J]. Reviews of Modern Physics, 2000, 72(2): 545-591. doi: 10.1103/RevModPhys.72.545
    [76] Chernikov S V, Dianov E M, Richardson D J, et al. Soliton pulse compression in dispersion-decreasing fiber[J]. Optics Letters, 1993, 18(7): 476-478. doi: 10.1364/OL.18.000476
    [77] Travers J C, Stone J M, Rulkov A B, et al. Optical pulse compression in dispersion decreasing photonic crystal fiber[J]. Optics Express, 2007, 15(20): 13203-13211. doi: 10.1364/OE.15.013203
    [78] Nisoli M, De Silvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique[J]. Applied Physics Letters, 1996, 68(20): 2793-2795. doi: 10.1063/1.116609
    [79] Schulte J, Sartorius T, Weitenberg J, et al. Nonlinear pulse compression in a multi-pass cell[J]. Optics Letters, 2016, 41(19): 4511-4514. doi: 10.1364/OL.41.004511
    [80] Pelusi M D, Liu Haifeng. Higher order soliton pulse compression in dispersion-decreasing optical fibers[J]. IEEE Journal of Quantum Electronics, 1997, 33(8): 1430-1439. doi: 10.1109/3.605567
    [81] Amorim A A, Tognetti M V, Oliveira P, et al. Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers[J]. Optics Letters, 2009, 34(24): 3851-3853. doi: 10.1364/OL.34.003851
    [82] Kieu K, Renninger W H, Chong A, et al. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser[J]. Optics Letters, 2009, 34(5): 593-595. doi: 10.1364/OL.34.000593
    [83] Dudley J M, Taylor J R. Supercontinuum generation in optical fibers[M]. Cambridge: Cambridge University Press, 2010.
    [84] Moon S, Kim D Y. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source[J]. Optics Express, 2006, 14(24): 11575-11584. doi: 10.1364/OE.14.011575
    [85] Maria M, Gonzalo I B, Feuchter T, et al. Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography[J]. Optics Letters, 2017, 42(22): 4744-4747. doi: 10.1364/OL.42.004744
    [86] Poudel C, Kaminski C F. Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications[J]. Journal of the Optical Society of America B, 2019, 36(2): A139-A153. doi: 10.1364/JOSAB.36.00A139
    [87] Mayer A S, Klenner A, Johnson A R, et al. Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides[J]. Optics Express, 2015, 23(12): 15440-15451. doi: 10.1364/OE.23.015440
    [88] Kaminski C F, Watt R S, Elder A D, et al. Supercontinuum radiation for applications in chemical sensing and microscopy[J]. Applied Physics B, 2008, 92(3): 367-378. doi: 10.1007/s00340-008-3132-1
    [89] Dai Shixun, Wang Yingying, Peng Xuefeng, et al. A review of mid-infrared supercontinuum generation in chalcogenide glass fibers[J]. Applied Sciences, 2018, 8: 707. doi: 10.3390/app8050707
    [90] Yu Yi, Gai Xin, Wang Ting, et al. Mid-infrared supercontinuum generation in chalcogenides[J]. Optical Materials Express, 2013, 3(8): 1075-1086. doi: 10.1364/OME.3.001075
    [91] Belal M, Xu L, Horak P, et al. Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers[J]. Optics Letters, 2015, 40(10): 2237-2240. doi: 10.1364/OL.40.002237
    [92] Thapa R, Rhonehouse D, Nguyen D, et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm[C]//Proceedings of SPIE 8898, Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems. Dresden: SPIE, 2013: 889808.
    [93] Wang Yingying, Dai Shixun. Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review[J]. PhotoniX, 2021, 2: 9. doi: 10.1186/s43074-021-00031-3
    [94] Marandi A, Rudy C W, Plotnichenko V G, et al. Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm[J]. Optics Express, 2012, 20(22): 24218-24225. doi: 10.1364/OE.20.024218
    [95] Møller U, Yu Yi, Kubat I, et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber[J]. Optics Express, 2015, 23(3): 3282-3291. doi: 10.1364/OE.23.003282
    [96] Corwin K L, Newbury N R, Dudley J M, et al. Fundamental noise limitations to supercontinuum generation in microstructure fiber[J]. Physical Review Letters, 2003, 90: 113904. doi: 10.1103/PhysRevLett.90.113904
    [97] Starecki F, Braud A, Abdellaoui N, et al. 7 to 8 µm emission from Sm3+ doped selenide fibers[J]. Optics Express, 2018, 26(20): 26462-26469. doi: 10.1364/OE.26.026462
    [98] Crane R W, Sójka Ł, Furniss D, et al. Experimental photoluminescence and lifetimes at wavelengths including beyond 7 microns in Sm3+-doped selenide-chalcogenide glass fibers[J]. Optics Express, 2020, 28(8): 12373-12384. doi: 10.1364/OE.383033
    [99] Bernier M, Faucher D, Vallée R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm[J]. Optics Letters, 2007, 32(5): 454-456. doi: 10.1364/OL.32.000454
    [100] Bharathan G, Fernandez T T, Ams M, et al. Femtosecond laser direct-written fiber Bragg gratings with high reflectivity and low loss at wavelengths beyond 4 µm[J]. Optics Letters, 2020, 45(15): 4316-4319. doi: 10.1364/OL.399329
    [101] Bharathan G, Fernandez T T, Ams M, et al. Optimized laser-written ZBLAN fiber Bragg gratings with high reflectivity and low loss[J]. Optics Letters, 2019, 44(2): 423-426. doi: 10.1364/OL.44.000423
    [102] Aydin Y O, Maes F, Fortin V, et al. Endcapping of high-power 3 µm fiber lasers[J]. Optics Express, 2019, 27(15): 20659-20669. doi: 10.1364/OE.27.020659
    [103] Magnan-Saucier S, Duval S, Matte-Breton C, et al. Fuseless side-pump combiner for efficient fluoride-based double-clad fiber pumping[J]. Optics Letters, 2020, 45(20): 5828-5831. doi: 10.1364/OL.409174
    [104] Aydin Y O, Fortin V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542-4545. doi: 10.1364/OL.43.004542
    [105] Liu Zhanwei, Ziegler Z M, Wright L G, et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 2017, 4(6): 649-654. doi: 10.1364/OPTICA.4.000649
    [106] Repgen P, Schuhbauer B, Hinkelmann M, et al. Mode-locked pulses from a Thulium-doped fiber Mamyshev oscillator[J]. Optics Express, 2020, 28(9): 13837-13844. doi: 10.1364/OE.391640
    [107] Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 2017, 358(6359): 94-97. doi: 10.1126/science.aao0831
    [108] Wright L G, Sidorenko P, Pourbeyram H, et al. Mechanisms of spatiotemporal mode-locking[J]. Nature Physics, 2020, 16(5): 565-570. doi: 10.1038/s41567-020-0784-1
    [109] Teğin U, Kakkava E, Rahmani B, et al. Spatiotemporal self-similar fiber laser[J]. Optica, 2019, 6(11): 1412-1415. doi: 10.1364/OPTICA.6.001412
    [110] Dai Chuansheng, Dong Zhipeng, Lin Jiaqiang, et al. Self-cleaning effect in an all-fiber spatiotemporal mode-locked laser based on graded-index multimode fiber[J]. Optik, 2021, 243: 167487. doi: 10.1016/j.ijleo.2021.167487
    [111] Blanco-Redondo A, de Sterke C M, Sipe J E, et al. Pure-quartic solitons[J]. Nature Communications, 2016, 7: 10427. doi: 10.1038/ncomms10427
    [112] Runge A F J, Hudson D D, Tam K K K, et al. The pure-quartic soliton laser[J]. Nature Photonics, 2020, 14(8): 492-497. doi: 10.1038/s41566-020-0629-6
    [113] Runge A F J, Hudson D D, Tam K K K, et al. High-order dispersion solitons in mode-locked lasers[C]//Proceedings of CLEO: QELS_Fundamental Science 2020. Washington: Optical Society of America, 2020: FTh1A. 1.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1894
  • HTML全文浏览量:  537
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2021-10-26
  • 网络出版日期:  2021-11-04
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回