留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脉冲激光的空间碎片移除技术:综述与展望

吴冀川 赵剑衡 黄元杰 张黎 张永强 谭福利

吴冀川, 赵剑衡, 黄元杰, 等. 基于脉冲激光的空间碎片移除技术:综述与展望[J]. 强激光与粒子束, 2022, 34: 011006. doi: 10.11884/HPLPB202234.210334
引用本文: 吴冀川, 赵剑衡, 黄元杰, 等. 基于脉冲激光的空间碎片移除技术:综述与展望[J]. 强激光与粒子束, 2022, 34: 011006. doi: 10.11884/HPLPB202234.210334
Wu Jichuan, Zhao Jianheng, Huang Yuanjie, et al. Removal of space debris by pulsed laser: Overview and future perspective[J]. High Power Laser and Particle Beams, 2022, 34: 011006. doi: 10.11884/HPLPB202234.210334
Citation: Wu Jichuan, Zhao Jianheng, Huang Yuanjie, et al. Removal of space debris by pulsed laser: Overview and future perspective[J]. High Power Laser and Particle Beams, 2022, 34: 011006. doi: 10.11884/HPLPB202234.210334

基于脉冲激光的空间碎片移除技术:综述与展望

doi: 10.11884/HPLPB202234.210334
详细信息
    作者简介:

    吴冀川,wujichuan_wjc@foxmail.com

    通讯作者:

    张永强,minizhang_0804@163.com

  • 中图分类号: O532.25;O53

Removal of space debris by pulsed laser: Overview and future perspective

  • 摘要: 近年来,近地轨道的空间碎片问题对航天应用的威胁日益严峻。通过主动移除技术手段减少在轨空间碎片的数量,从而保障空间资源的可持续开发和航天器的安全运行,已成为相关领域研究的热点。溯源了空间碎片问题的产生及沿革,分析基于不同技术途径的主动移除方案的特点。重点研究了脉冲激光主动移除空间碎片的关键技术与科学问题,总结了现阶段的技术发展情况,并对未来天基激光移除空间碎片的发展方向给出了建议。
  • 图  1  基于LEGEND模型的空间碎片碰撞趋势预估[5]

    Figure  1.  Prediction of space debris collisions based on LEGEND model[5]

    图  2  美国长期暴露设施项目及空间碎片撞击坑

    Figure  2.  The US LDEF project and the collision morphology due to space debris

    图  3  卫星太阳翼撞击示意图

    Figure  3.  Schematics for the collision of space debris with satellite

    图  4  星链计划及已在轨卫星数量统计[9]

    Figure  4.  Starlink project and the number of on-orbit satellites[9]

    图  5  Whipple防护屏结构撞击测试

    Figure  5.  Impact test of Whipple shield structure

    图  6  JAXA电动力绳系及ESA飞网式离轨方案示意图

    Figure  6.  Schematics of JAXA’s electrodynamic tethers and ESA’s net attached deorbit plan (JAXA: Japan Aerospace Exploration Agency)

    图  7  ESA太阳帆离轨方案示意图

    Figure  7.  Schematics of ESA’s solar sail deorbit plan

    图  8  LODR计划及其驱离碎片效能预估[21]

    Figure  8.  The LODR project and its ability in space debris removal[21]

    图  9  DLR的地基激光移除方案

    Figure  9.  DLR’s design and plan of laser removal of space debris

    图  10  JEM-EUSO项目中激光移除方案

    Figure  10.  Laser removal of space debris in JEM-EUSO program

    图  11  天基激光移除平台的系统典型组成

    Figure  11.  A classic illustration of space-based laser removal system

    图  12  脉冲激光与碎片材料相互作用

    Figure  12.  The interaction of laser with space debris material

    图  13  铝合金材料获得最优冲量耦合系数的激光参数[49]

    Figure  13.  The laser parameters for obtaining optimum impulse coupling coefficient for aluminum[49]

    图  14  不同能量密度辐照下的铝合金冲量耦合系数变化

    Figure  14.  The variation of impulse coupling coefficient for aluminum with different laser energy density

    图  15  不同能量密度辐照下的碳纤维冲量耦合系数变化

    Figure  15.  The variation of impulse coupling coefficient for carbon fiber material with different laser energy density

    图  16  气压对冲量耦合系数的影响

    Figure  16.  The influence of pressure to the impulse coupling coefficient

    图  17  等离子体羽流演化全息成像

    Figure  17.  Holographic of plasma plume during laser irradiation

    图  18  等离子体羽流仿真计算结果

    Figure  18.  Simulation results of plasma plume development

    图  19  基于模型的激光移除空间碎片数字化评估架构图

    Figure  19.  Structure of model-based evaluation of laser removal of space debris

    图  20  数字化评估系统的数据流传输逻辑

    Figure  20.  The logic of data flow in the evaluation system

    图  21  脉冲激光移除空间碎片数字化评估界面

    Figure  21.  The output user-interface for the evaluation system of laser removal of space debris

    表  1  1992—1997美国航天飞机空间碎片碰撞情况统计

    Table  1.   Collisions of space debris with US space shuttle during 1992 to 1997

    material of space debrisnumber of collisionsimpact depth/mmposition of collision
    Ti10.57observation window
    coating material(polymer)30.57~1.1hatch door, radiator
    Al50.24~2.1observation window, antenna, sealing system,
    PLB door, bracket trunnion
    stainless steel51.0~2.8radiator
    meteoroids40.4~1.4radiation pipeline, antenna, sealing system
    下载: 导出CSV
  • [1] 郑永超, 赵思思, 李同, 等. 激光空间碎片移除技术发展与展望[J]. 空间碎片研究, 2020, 20(4):1-10. (Zheng Yongchao, Zhao Sisi, Li Tong, et al. Current status and development of laser active debris removal technology[J]. Space Debris Research, 2020, 20(4): 1-10
    [2] Le May S, Gehly S, Carter B A, et al. Space debris collision probability analysis for proposed global broadband constellations[J]. Acta Astronautica, 2018, 151: 445-455. doi: 10.1016/j.actaastro.2018.06.036
    [3] 王钊, 杨东春, 康志宇. 空间碎片主动移除任务的相关法律问题[J]. 北京航空航天大学学报(社会科学版), 2015, 28(2):44-48. (Wang Zhao, Yang Dongchun, Kang Zhiyu. Legal matters about space debris removing[J]. Journal of Beijing University of Aeronautics and Astronautics (Social Sciences Edition), 2015, 28(2): 44-48
    [4] Kessler D J. Collisional cascading: the limits of population growth in low earth orbit[J]. Advances in Space Research, 1991, 11(12): 63-66. doi: 10.1016/0273-1177(91)90543-S
    [5] 江海, 刘静. 空间碎片与空间交通管理[J]. 空间碎片研究, 2019, 19(1):39-44. (Jiang Hai, Liu Jing. Space debris and space traffic management[J]. Space Debris Research, 2019, 19(1): 39-44
    [6] Klinkrad H. Space debris: models and risk analysis[M]. Berlin: Springer, 2006.
    [7] 罗刚桥. 空间碎片减缓措施及其研究对策[J]. 中国空间科学技术, 2001, 21(6):33-42. (Luo Gangqiao. The mitigation measures of space debris and the strategy of study[J]. Chinese Space Science and Technology, 2001, 21(6): 33-42 doi: 10.3321/j.issn:1000-758X.2001.06.006
    [8] Šilha J. Space debris: optical measurements[M]//Kabáth P, Jones D, Skarka M. Reviews in Frontiers of Modern Astrophysics. Cham: Springer, 2020: 1-21.
    [9] Pool R. Scrapheap in the sky [Technology space debris][J]. Engineering & Technology, 2021, 16(3): 44-47.
    [10] 龚自正, 杨继运, 代福, 等. CAST空间碎片超高速撞击试验研究进展[J]. 航天器环境工程, 2009, 26(4):301-306. (Gong Zizheng, Yang Jiyun, Dai Fu, et al. M/OD hypervelocity impact tests carried out in CAST[J]. Spacecraft Environment Engineering, 2009, 26(4): 301-306 doi: 10.3969/j.issn.1673-1379.2009.04.001
    [11] 罗斌强, 张旭平, 郝龙, 等. 7 km/s以上超高速发射技术研究进展[J]. 爆炸与冲击, 2021, 41:021401. (Luo Binqiang, Zhang Xuping, Hao Long, et al. Advances on the techniques of ultrahigh-velocity launch above 7 km/s[J]. Explosion and Shock Waves, 2021, 41: 021401
    [12] 王国语. 空间碎片管辖权及主动清除的法律依据[J]. 北京理工大学学报(社会科学版), 2014, 16(6):103-109. (Wang Guoyu. The jurisdiction of space debris and the legal basis of active space debris removal[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2014, 16(6): 103-109
    [13] 李怡勇, 陈勇, 李智, 等. 对一种利用人造粉尘清除空间碎片新方法的理论分析[J]. 空间科学学报, 2015, 35(1):77-85. (Li Yiyong, Chen Yong, Li Zhi, et al. Theoretic analysis on a new technique of dust-based active debris removal[J]. Chinese Journal of Space Science, 2015, 35(1): 77-85
    [14] 王小锭, 张烽, 申麟, 等. 空间平台电动力绳系离轨装置技术研究[J]. 空间碎片研究, 2020, 20(2):22-31. (Wang Xiaoding, Zhang Feng, Shen Lin, et al. An EDT de-orbiting equipment for spacecraft[J]. Space Debris Research, 2020, 20(2): 22-31
    [15] Mark C P, Kamath S. Review of active space debris removal methods[J]. Space Policy, 2019, 47: 194-206. doi: 10.1016/j.spacepol.2018.12.005
    [16] Kelly P W, Bevilacqua R, Mazal L, et al. TugSat: removing space debris from geostationary orbits using solar sails[J]. Journal of Spacecraft and Rockets, 2018, 55(2): 437-450. doi: 10.2514/1.A33872
    [17] Colombo C, Rossi A, Vedova F D, et al. Drag and solar sail deorbiting: re-entry time versus cumulative collision probability[C]//68th International Astronautical Congress (IAC 2017). IAF, 2017: 3535-3553.
    [18] Soulard R, Quinn M N, Tajima T, et al. ICAN: a novel laser architecture for space debris removal[J]. Acta Astronautica, 2014, 105(1): 192-200. doi: 10.1016/j.actaastro.2014.09.004
    [19] Sänger E. On the theory of photon rocket[J]. Engineer Archive, 1953, 21(3): 213-226. doi: 10.1007/BF00535829
    [20] Kantrowitz A. Propulsion to orbit by ground-based laser[J]. Astronautics and Aeronautics, 1972, 10(5): 74-76.
    [21] Phipps C R, Albrecht G, Friedman H, et al. ORION: clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser[J]. Laser and Particle Beams, 1996, 14(1): 1-44. doi: 10.1017/S0263034600009733
    [22] Van Der Pas N, Lousada J, Terhes C, et al. Target selection and comparison of mission design for space debris removal by DLR׳s advanced study group[J]. Acta Astronautica, 2014, 102: 241-248. doi: 10.1016/j.actaastro.2014.06.020
    [23] Shan Minghe, Guo Jian, Gill E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80: 18-32. doi: 10.1016/j.paerosci.2015.11.001
    [24] 杜配冰, 刘钰, 陈志华, 等. 基于多项式混沌的激光大气传输湍流效应不确定度量化[J]. 现代应用物理, 2021, 12(2):29-34. (Du Peibing, Liu Yu, Chen Zhihua, et al. Uncertainty quantification for turbulence effect of laser propagation in atmosphere based on polynomial chaos[J]. Modern Applied Physics, 2021, 12(2): 29-34
    [25] 赵璐, 王静, 郭苗军, 等. 基于微扰法研究涡旋光束在大气中传输的热晕效应[J]. 光电子·激光, 2021, 32(5):532-540. (Zhao Lu, Wang Jing, Guo Miaojun, et al. The thermal blooming effect of vortex beam propagation in the atmosphere is studied by perturbation method[J]. Journal of Optoelectronics·Laser, 2021, 32(5): 532-540
    [26] Schall W O. Laser radiation for cleaning space debris from lower earth orbits[J]. Journal of Spacecraft and Rockets, 2002, 39(1): 81-91. doi: 10.2514/2.3785
    [27] Vasile M, Maddock C, Saunders C. Orbital debris removal with solar concentrators[C]//61st International Astronautical Congress. 2010.
    [28] Vetrisano M, Thiry N, Vasile M. Detumbling large space debris via laser ablation[C]//2015 IEEE Aerospace Conference. IEEE, 2015: 1-10.
    [29] 杨武霖, 陈川, 余谦, 等. 天基激光驱动空间碎片降轨效果仿真研究[J]. 航天器环境工程, 2018, 35(3):217-222. (Yang Wulin, Chen Chuan, Yu Qian, et al. Simulation of space debris de-orbiting by space-based laser ablation[J]. Spacecraft Environment Engineering, 2018, 35(3): 217-222 doi: 10.3969/j.issn.1673-1379.2018.03.003
    [30] 吴波, 金星. 激光辐照下圆锥体空间碎片的激光烧蚀力与力矩分析方法[J]. 空间碎片研究, 2019, 19(4):28-33. (Wu Bo, Jin Xing. Laser ablation force and moment analysis method for conical space debris under laser irradiation[J]. Space Debris Research, 2019, 19(4): 28-33
    [31] Bennet F, Conan R, D'Orgeville C, et al. Adaptive optics for laser space debris removal[C]//Proceedings of SPIE 8447. Adaptive Optics Systems III. 2012: 844744.
    [32] Liedahl D A, Rubenchik A, Libby S B, et al. Pulsed laser interactions with space debris: target shape effects[J]. Advances in Space Research, 2013, 52(5): 895-915. doi: 10.1016/j.asr.2013.05.019
    [33] Phipps C R. Laser space debris removal: now, not later[C]//Proceedings of SPIE 9255. XX International Symposium on High-Power Laser Systems and Applications 2014. 2015: 92553Q.
    [34] Phipps C R. L’ADROIT–A spaceborne ultraviolet laser system for space debris clearing[J]. Acta Astronautica, 2014, 104(1): 243-255. doi: 10.1016/j.actaastro.2014.08.007
    [35] Phipps C R, Bonnal C. A spaceborne, pulsed UV laser system for re-entering or nudging LEO debris, and re-orbiting GEO debris[J]. Acta Astronautica, 2016, 118: 224-236. doi: 10.1016/j.actaastro.2015.10.005
    [36] 陈川, 杨武霖, 余谦, 等. 激光驱动接力移除空间碎片的小卫星星座及可行性研究[J]. 宇航学报, 2019, 40(2):156-163. (Chen Chuan, Yang Wulin, Yu Qian, et al. A laser driven relay small satellite constellation for space debris active removal and feasibility study[J]. Journal of Astronautics, 2019, 40(2): 156-163
    [37] 赵剑衡. 激光清除空间碎片分析[C]//第十四届全国物理力学学术会议缩编文集. 2016: 1.

    Zhao Jianheng. Analysis on laser removal of space debris[C]//Condensed Proceedings of the 14th National Conference on Physical Mechanics. 2016: 1.
    [38] 金云声, 张兴卫, 谭福礼, 等. 干涉式冲量摆测试装置及其双精度数据处理方法[J]. 光学学报, 2017, 37:0512001. (Jin Yunsheng, Zhang Xingwei, Tan Fuli, et al. Testing device based on interferometric ballistic pendulum and its double precision data processing method[J]. Acta Optica Sinica, 2017, 37: 0512001 doi: 10.3788/AOS201737.0512001
    [39] 叶继飞, 洪延姬. 基于扭秤的激光干涉差动测量微小冲量方法[J]. 应用光学, 2013, 34(6):990-994. (Ye Jifei, Hong Yanji. Laser interference differential measurement of micro impulse based on torsion balance[J]. Journal of Applied Optics, 2013, 34(6): 990-994
    [40] Afanas’ev Y V, Basov N G, Krokhin O N, et al. Gas-dynamic processes in irradiation of solids[J]. Soviet Physics Technical Physics, 1969, 14(5): 669-676.
    [41] Sprangle P, Esarey E, Ting A. Nonlinear theory of intense laser-plasma interactions[J]. Physical Review Letters, 1990, 64(17): 2011-2014. doi: 10.1103/PhysRevLett.64.2011
    [42] Holmes B S, Maher W E, Hall R B. Laser-target interaction near the plasma-formation threshold[J]. Journal of Applied Physics, 1980, 51(11): 5699-5707. doi: 10.1063/1.327569
    [43] Shih C Y, Wu Chengping, Shugaev M V, et al. Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water[J]. Journal of Colloid and Interface Science, 2017, 489: 3-17. doi: 10.1016/j.jcis.2016.10.029
    [44] Mahmood S, Rawat R S, Springham S V, et al. Material ablation and plasma plume expansion study from Fe and graphite targets in Ar gas atmosphere[J]. Applied Physics A, 2010, 101(4): 695-699. doi: 10.1007/s00339-010-5951-2
    [45] Schmitz T A, Koch J, Günther D, et al. Characterization of aerosol plumes in nanosecond laser ablation of molecular solids at atmospheric pressure[J]. Applied Physics B, 2010, 100(3): 521-533. doi: 10.1007/s00340-010-4112-9
    [46] 袁红, 童慧峰, 李牧, 等. 强激光加载真空中铝靶冲量耦合的数值模拟[J]. 激光技术, 2012, 36(4):520-523. (Yuan Hong, Tong Huifeng, Li Mu, et al. Numerical simulation of impulse coupling to aluminum in laser ablation in vacuum[J]. Laser Technology, 2012, 36(4): 520-523 doi: 10.3969/j.issn.1001-3806.2012.04.022
    [47] Pakhomov A V, Gregory D A. Ablative laser propulsion: an old concept revisited[J]. AIAA Journal, 2000, 38(4): 725-727. doi: 10.2514/2.1021
    [48] Phipps C R, Baker K L, Libby S B, et al. Removing orbital debris with pulsed lasers[J]. AIP Conference Proceedings, 2012, 1464(1): 468-480.
    [49] Phipps C R, Boustie M, Chevalier J M, et al. Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength[J]. Journal of Applied Physics, 2017, 122: 193103. doi: 10.1063/1.4997196
    [50] D'Souza B C. Development of impulse measurement techniques for the investigation of transient forces due to laser-induced ablation[D]. Los Angeles: University of Southern California, 2007.
    [51] Phipps C R Jr, Turner T P, Harrison R F, et al. Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers[J]. Journal of Applied Physics, 1988, 64(3): 1083-1096. doi: 10.1063/1.341867
    [52] Phipps C, Luke J, Funk D, et al. Laser impulse coupling at 130 fs[J]. Applied Surface Science, 2006, 252(13): 4838-4844. doi: 10.1016/j.apsusc.2005.07.079
    [53] Munafò A, Alberti A, Pantano C, et al. A computational model for nanosecond pulse laser-plasma interactions[J]. Journal of Computational Physics, 2020, 406: 109190. doi: 10.1016/j.jcp.2019.109190
    [54] Scharring S, Eisert L, Lorbeer R A, et al. Momentum predictability and heat accumulation in laser-based space debris removal[J]. Optical Engineering, 2018, 58: 011004.
    [55] 常浩, 金星, 叶继飞, 等. 激光功率密度对纳秒激光烧蚀冲量耦合影响的数值模拟[J]. 推进技术, 2013, 34(10):1426-1431. (Chang Hao, Jin Xing, Ye Jifei, et al. Numerical simulation of laser power density effect on nanosecond laser ablation impulse coupling[J]. Journal of Propulsion Technology, 2013, 34(10): 1426-1431
    [56] 方英武, 赵尚弘, 杨丽薇, 等. 地基激光辐照近地轨道小尺度空间碎片作用规律研究[J]. 红外与激光工程, 2016, 45:229002. (Fang Yingwu, Zhao Shanghong, Yang Liwei, et al. Research on action rules of ground-based laser irradiating small scale space debris in LEO[J]. Infrared and Laser Engineering, 2016, 45: 229002 doi: 10.3788/irla201645.0229002
    [57] 王卫杰, 李怡勇, 罗文, 等. 天基激光清除空间碎片任务分析[J]. 系统工程与电子技术, 2019, 41(6):1374-1382. (Wang Weijie, Li Yiyong, Luo Wen, et al. Mission analysis on removal of space debris with space-based laser[J]. Systems Engineering and Electronics, 2019, 41(6): 1374-1382 doi: 10.3969/j.issn.1001506X.2019.06.27
    [58] 王治, 万峰, 吴剑锋, 等. 卫星总装过程异构数据物联集成技术研究[J]. 西北工业大学学报, 2020, 38(S1):44-52. (Wang Zhi, Wan Feng, Wu Jianfeng, et al. Research on integration technology of heterogeneous data of satellite assembly process[J]. Journal of Northwestern Polytechnical University, 2020, 38(S1): 44-52
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  1667
  • HTML全文浏览量:  648
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-10-11
  • 网络出版日期:  2021-11-02
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回