留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩等离子体流脉冲能量密度修正方法

屈苗 颜莎

屈苗, 颜莎. 压缩等离子体流脉冲能量密度修正方法[J]. 强激光与粒子束, 2023, 35: 065005. doi: 10.11884/HPLPB202335.220182
引用本文: 屈苗, 颜莎. 压缩等离子体流脉冲能量密度修正方法[J]. 强激光与粒子束, 2023, 35: 065005. doi: 10.11884/HPLPB202335.220182
Qu Miao, Yan Sha. Correction method for pulse energy density of compression plasma flows[J]. High Power Laser and Particle Beams, 2023, 35: 065005. doi: 10.11884/HPLPB202335.220182
Citation: Qu Miao, Yan Sha. Correction method for pulse energy density of compression plasma flows[J]. High Power Laser and Particle Beams, 2023, 35: 065005. doi: 10.11884/HPLPB202335.220182

压缩等离子体流脉冲能量密度修正方法

doi: 10.11884/HPLPB202335.220182
基金项目: 国家磁约束核聚变研究计划专项(2013GB109004)
详细信息
    作者简介:

    屈 苗,qum@cinis.com.cn

    通讯作者:

    颜 莎,syan@pku.edu.cn

  • 中图分类号: O536

Correction method for pulse energy density of compression plasma flows

  • 摘要: 介绍了压缩等离子体流能量密度诊断存在的问题,基于能量的耗散走向分析及热传导计算模型,针对汽化过程对诊断带来的误差,给出了一种基于测量的质量损失,通过表面退行的有限元计算反推损失相同质量所需输入能量的能量密度修正方法,并对能量密度修正进行了评估,通过此方法得到的修正能量密度与实验结果相吻合,但要获得更准确的能量密度,还需针对屏蔽等离子体、反冲应力波等因素进行能量密度修正,或开发出更准确的能量密度诊断方法。
  • 图  1  紧凑型磁等离子体压缩机和产生的压缩等离子体流

    Figure  1.  Compact magnetoplasma compressor and compression plasma flow

    图  2  钨在名义能量密度0.3 MJ/m2(脉宽 0.1 ms)的CPF单脉冲辐照下的表面形貌

    Figure  2.  Surface morphology of tungsten under CPF single pulse irradiation with nominal energy density of 0.3 MJ/m2 (pulse width 0.1 ms)

    图  3  用Comsol计算出不同的脉冲能量密度(脉宽 0.1 ms)下表面温度随时间的变化

    Figure  3.  Variation of surface temperature with time under different pulse energy densities (pulse width 0.1 ms) calculated by Comsol

    图  4  无汽化和烧蚀的情况下能量输入与耗散示意图

    Figure  4.  Schematic diagram of energy input and dissipation without boiling and ablation

    图  5  有汽化或者烧蚀的情况下能量输入与耗散示意图

    Figure  5.  Schematic diagram of energy input and dissipation with vaporization or ablation

    图  6  针对汽化过程的能量密度修正方法

    Figure  6.  Energy density correction method for vaporization process

    图  7  钨的热导率随温度的变化[17]

    Figure  7.  Temperature dependence of thermal conductivity of W

    图  8  钨在入射能量密度1.2 MJ/m2(脉宽 0.1 ms)的CPF单脉冲辐照下深度方向温度分布随时间的变化

    Figure  8.  Time dependence of temperature distribution in depth direction of tungsten irradiated by CPF single pulse (pulse width 0.1 ms) with input energy density of 1.2 MJ/m2

    图  9  计算得到的表面退行量随计算输入能量密度的变化

    Figure  9.  Variation of the calculated surface degeneration with the input energy density

    图  10  实验中质量损失随名义能量密度的变化

    Figure  10.  Variation of mass loss with nominal energy density in experiment

    图  11  表2表3中表面退行量随能量密度的变化

    Figure  11.  Degenerative length under different energy densities from Table 2 and Table 3

    图  12  能量密度修正的结果评估示意图

    Figure  12.  Schematic diagram of result evaluation of energy density correction

    表  1  钨材料的参数

    Table  1.   Parameters of tungsten materials

    parametervalue
    specific heat capacity of solid state/(J·kg−1·K−1) 144
    specific heat capacity of liquid state/(J·kg−1·K−1) 200
    solid density/(kg·m−3) 19 350
    liquid density/(kg·m−3) 17 600
    thermal conductivity/(W·m−1·K−1) variation with temperature
    melting point Tm/K 3 683.15
    boiling point Tb/K 5 933.15
    latent Heat LS-L/(kJ·kg−1) 187
    latent Heat LL-G/(kJ·kg−1) 4 009
    下载: 导出CSV

    表  2  计算模拟得到的不同输入能量密度下的表面退行量

    Table  2.   Calculated surface degeneration under different input energy densities

    $ \varepsilon $/(MJ/m2)$ \Delta x $/μm
    0.700.00
    0.750.19
    0.800.58
    0.951.94
    1.002.52
    1.052.94
    1.153.98
    1.204.51
    下载: 导出CSV

    表  3  实验中质量损失所对应的表面退行量

    Table  3.   Surface degeneration corresponding to mass loss in the experiment

    $ {\varepsilon _n} $/(MJ/m2)$ \Delta m $/mg$ \Delta x' $/μm
    0.302.801.28
    0.404.452.04
    0.506.102.80
    0.9513.546.20
    1.0014.366.58
    1.0515.196.96
    1.1516.847.72
    1.2017.678.10
    下载: 导出CSV

    表  4  名义平均能量密度的修正结果

    Table  4.   Correction results of nominal average energy densities

    $ {\varepsilon _n} $/(MJ/m2)$ \varepsilon $/(MJ/m2)
    0.30.87
    0.40.95
    0.51.03
    0.951.39
    1.051.46
    1.151.54
    1.201.58
    下载: 导出CSV
  • [1] Wilson H. Edge localized modes in tokamaks[J]. Fusion Science and Technology, 2010, 57(2T): 174-182. doi: 10.13182/FST10-A9408
    [2] Pintsuk G, Kühnlein W, Linke J, et al. Investigation of tungsten and beryllium behaviour under short transient events[J]. Fusion Engineering and Design, 2007, 82(15/24): 1720-1729.
    [3] Zhitlukhin A, Klimov N, Landman I, et al. Effects of ELMs on ITER divertor armour materials[J]. Journal of Nuclear Materials, 2007, 363/365: 301-307. doi: 10.1016/j.jnucmat.2007.01.027
    [4] Khimchenko L N, Gureev V M, Federici G, et al. Study of erosion products in experiments simulating ELMs and disruptions in ITER on plasma gun QSPA-facility[C]//Proc. 21 Fusion Energy Conf. 2006.
    [5] Hirai T, Ezato K, Majerus P. ITER relevant high heat flux testing on plasma facing surfaces[J]. Materials Transactions, 2005, 46(3): 412-424. doi: 10.2320/matertrans.46.412
    [6] Linke J, Escourbiac F, Mazul I V, et al. High heat flux testing of plasma facing materials and components – Status and perspectives for ITER related activities[J]. Journal of Nuclear Materials, 2007, 367/370: 1422-1431. doi: 10.1016/j.jnucmat.2007.04.028
    [7] Kovalenko D V, Klimov N S, Podkovyrov V L, et al. Behavior of divertor and first wall armour materials at plasma heat fluxes relevant to ITER ELMs and disruptions[J]. Nuclear Materials and Energy, 2017, 12: 156-163. doi: 10.1016/j.nme.2017.05.007
    [8] 张博尧. 注He纯钨在瞬态热负载下的性能研究[D]. 北京: 北京大学, 2014

    Zhang Boyao. The performance research of helium irradiated tungsten under transient thermal load[D]. Beijing: Peking University, 2014
    [9] 屈苗, 喻晓, 张洁, 等. 强流脉冲离子束能量密度分布的红外诊断[J]. 强激光与粒子束, 2015, 27:075002 doi: 10.11884/HPLPB201527.075002

    Qu Miao, Yu Xiao, Zhang Jie, et al. Infrared imaging diagnostics of the energy density distribution at the intense pulsed ion beam cross-section[J]. High Power Laser and Particle Beams, 2015, 27: 075002 doi: 10.11884/HPLPB201527.075002
    [10] Astashinskii V M, Bakanovich G I, Kuz'mitskii A M, et al. Choice of operating conditions and plasma parameters of a magnetoplasma compressor[J]. Journal of Engineering Physics and Thermophysics, 1992, 62(3): 281-284. doi: 10.1007/BF00851755
    [11] Uglov V V, Anishchik V M, Astashynski V V, et al. The effect of dense compression plasma flow on silicon surface morphology[J]. Surface and Coatings Technology, 2002, 158/159: 273-276. doi: 10.1016/S0257-8972(02)00182-2
    [12] Sari A H, Astashynski V M, Kostyukevich E A, et al. Alloying of austenitic steel surface with zirconium using nitrogen compression plasma flow[J]. Vacuum, 2015, 115: 39-45. doi: 10.1016/j.vacuum.2015.01.032
    [13] Anishchik V M, Uglov V V, Astashynski V V, et al. Compressive plasma flows interaction with steel surface: structure and mechanical properties of modified layer[J]. Vacuum, 2003, 70(2/3): 269-274.
    [14] Vinogradova A K, Morozov A I. Physics and application of plasma accelerators[in Russian], Minsk (1974).
    [15] Dojčinović I P, Kuraica M M, Obradovć B M, et al. Optimization of plasma flow parameters of the magnetoplasma compressor[J]. Plasma Sources Science and Technology, 2007, 16(1): 72-79. doi: 10.1088/0963-0252/16/1/010
    [16] Lienhard J H. A heat transfer textbook[M]. New Jersey: Prentice-Hall, 1981.
    [17] Federici G, Loarte A, Strohmayer G. Assessment of erosion of the ITER divertor targets during type I ELMs[J]. Plasma Physics and Controlled Fusion, 2003, 45(9): 1523-1547. doi: 10.1088/0741-3335/45/9/301
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  151
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-08-26
  • 录用日期:  2023-01-06
  • 网络出版日期:  2023-02-22
  • 刊出日期:  2023-05-06

目录

    /

    返回文章
    返回