Volume 32 Issue 1
Dec.  2019
Turn off MathJax
Article Contents
Wang Keying, Fan Xuanhua, Chen Xueqian, et al. Random vibration response analysis of Shenguang laser facility component based on PANDA platform[J]. High Power Laser and Particle Beams, 2020, 32: 011021. doi: 10.11884/HPLPB202032.190269
Citation: Wang Keying, Fan Xuanhua, Chen Xueqian, et al. Random vibration response analysis of Shenguang laser facility component based on PANDA platform[J]. High Power Laser and Particle Beams, 2020, 32: 011021. doi: 10.11884/HPLPB202032.190269

Random vibration response analysis of Shenguang laser facility component based on PANDA platform

doi: 10.11884/HPLPB202032.190269
  • Received Date: 2019-07-19
  • Rev Recd Date: 2019-11-14
  • Publish Date: 2019-12-26
  • Reliability design requirements for large and complex equipment pose new challenges to numerical simulation of structural dynamics. In this paper, based on self-developed parallel computing platform PANDA, the modal superposition method is used to calculate the random vibration response under multi-point foundation excitation. The algorithm design and parallel implementation are carried out, and the corresponding solving module is constructed. Taking the six-degree-of-freedom platform structure in the target positioning prototype of Shenguang facility as a numerical example, the modal and random vibration responses of the structure under ground fluctuating load are analyzed with our self-developed progress modules in PANDA platform. The analysis results are compared with the test results and commercial software analysis results. In terms of mode frequency, mode shape and displacement response, the results are consistent, which verifies the correctness of the relevant software and proves the feasibility of PANDA platform in actual engineering structural analysis. The correlative studies have important significance on solving dynamic analysis problems of complex equipments with autonomic software and breaking limitations of commercial finite element software.
  • loading
  • [1]
    任健, 武林平, 申卫东. 基于JASMIN框架多物理耦合程序的性能优化及分析[J]. 计算物理, 2015, 32(4):431-436. (Ren Jian, Wu Linping, Shen Weidong. Performance optimization and analysis of multi-physics composition program on JASMIN[J]. Chinese Journal of Computational Physics, 2015, 32(4): 431-436 doi: 10.3969/j.issn.1001-246X.2015.04.008
    [2]
    张锐, 文立华, 校金友. 大规模声学边界元法的GPU并行计算[J]. 计算物理, 2015, 32(3):299-309. (Zhang Rui, Wen Lihua, Xiao Jinyou. GPU-accelerated boundary element method for large-scale problems in acoustics[J]. Chinese Journal of Computational Physics, 2015, 32(3): 299-309 doi: 10.3969/j.issn.1001-246X.2015.03.005
    [3]
    Edwards C, Stewart J R. SIERRA: A software environment for developing complex multi-physics applications[C]//Proceedings of the 1st MIT Conference on Computational Fluid and Solid Mechanics. 2001.
    [4]
    Reese G M, Walsh T F, Bhardwaj M K. Salinas-theory manual[R]. SAND2011-8272, 2011.
    [5]
    范宣华. 基于PANDA框架的大规模有限元模态分析并行计算及应用[D]. 北京: 北京大学, 2013.

    Fan Xuanhua. Parallel computation and applications of large-scale finite element modal analysis based on PANDA framework. Beijing: Peking University, 2013
    [6]
    成杰, 张林波. 三维结构分析并行自适应有限元软件PHG-Solid[J]. 计算机科学, 2012, 39(5):278-281. (Cheng Jie, Zhang Linbo. PHG-Solid: A parallel adaptive FEM software for 3D structural analysis[J]. Computer Science, 2012, 39(5): 278-281 doi: 10.3969/j.issn.1002-137X.2012.05.066
    [7]
    梁国平. 有限元语言[M]. 北京: 科学出版社, 2009.

    Liang Guoping. Finite element programming. Beijing: Science Press, 2009
    [8]
    Liu Qingkai, Zhao Weibo, Cheng Jie, et al. A programming framework for large scale numerical simulations on unstructured mesh[C]//IEEE 2nd International Conference on High Performance and Smart Computing. 2016: 310-315.
    [9]
    Moses E I. Introduction to the National Ignition Facility [R]. UCRL-CONF-154962, 2004.
    [10]
    范宣华, 陈璞, 吴瑞安, 等. 基于Jacobi-Davidson算法的大规模模态分析并行计算研究[J]. 振动与冲击, 2014, 33(1):203-208. (Fan Xuanhua, Chen Pu, Wu Ruian, et al. Parallel computing of large-scale modal analysis based on Jacobi-Davidson algorithm[J]. Journal of Vibration and Shock, 2014, 33(1): 203-208 doi: 10.3969/j.issn.1000-3835.2014.01.035
    [11]
    范宣华, 于晨阳, 王柯颖, 等. 大规模单点基础激励随机振动分析及并行计算[J]. 重庆理工大学学报(自然科学), 2017, 31(10):56-61. (Fan Xuanhua, Yu Chenyang, Wan Keying, et al. Parallel computation of large-scale random vibration analysis under single-point motion-based excitation[J]. Journal of Chongqing University of Technology: Natural Science, 2017, 31(10): 56-61
    [12]
    范宣华, 肖世富, 陈璞, 等. 大规模结构动力学并行计算与软件研发进展[J]. 力学季刊, 2016, 3(1):421-432. (Fan Xuanhua, Xiao Shifu, Chen Pu, et al. Advances in the parallel computation and software development of large-scale structural dynamics[J]. Chinese Quarterly of Mechanics, 2016, 3(1): 421-432
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (1303) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return