Volume 32 Issue 3
Feb.  2020
Turn off MathJax
Article Contents
Geng Xingning, Xu Degang, Li Ji’ning, et al. Propagation characteristics of terahertz wave in plasma sheath around air vehicle[J]. High Power Laser and Particle Beams, 2020, 32: 033101. doi: 10.11884/HPLPB202032.190291
Citation: Geng Xingning, Xu Degang, Li Ji’ning, et al. Propagation characteristics of terahertz wave in plasma sheath around air vehicle[J]. High Power Laser and Particle Beams, 2020, 32: 033101. doi: 10.11884/HPLPB202032.190291

Propagation characteristics of terahertz wave in plasma sheath around air vehicle

doi: 10.11884/HPLPB202032.190291
  • Received Date: 2019-08-11
  • Rev Recd Date: 2019-11-21
  • Publish Date: 2020-02-10
  • In this paper, the plasma electron density and collision frequency are calculated based on the flow field simulation of RAM C-III air vehicle, and an inhomogeneous plasma model is established according to the calculation results. The effects of plasma density, plasma thickness, plasma collision frequency and external magnetic field on the propagation characteristics of terahertz wave in plasma are analyzed using scattering matrix method. The results show that the propagation loss increases with plasma electron density and plasma thickness, while the transmittance decreases first and then increases with the increasing of collision frequency. When an external magnetic field is applied, the propagation characteristics of the left-handed polarized terahertz wave will be improved, while for the right-handed polarized terahertz wave, the application of magnetic field induces an absorption peak, which shifts to high frequency range with the increasing of magnetic induction intensity. This work may make a contribution to solving the problem of communication blackout.
  • loading
  • [1]
    Hartunian R A, Stewart G E, Fergason S D, et al. Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles[R]. Aerospace Corporation, 2007.
    [2]
    Gillman E D, Foster J E. Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation[R]. NASA TM-2010-216220, 2010.
    [3]
    刘丰, 朱忠博, 崔万照, 等. 太赫兹技术在空间领域应用的探讨[J]. 太赫兹科学与电子信息学报, 2013, 11(6):857-866. (Liu Feng, Zhu Zhongbo, Cui Wanzhao, et al. Application of terahertz techniques in space science[J]. Journal of Terahertz Science & Electronic Information Technology, 2013, 11(6): 857-866
    [4]
    申金娥, 荣健, 刘文鑫. 太赫兹技术在通信方面的研究进展[J]. 红外与激光工程, 2006, 35(3):342-347. (Shen Jin′e, Rong Jian, Liu Wenxin. Progress of terahertz in communication technology[J]. Infrared and Laser Engineering, 2006, 35(3): 342-347
    [5]
    Bu F. Progress of terahertz spectroscopy[J]. Journal of Electronic Measurement & Instrument, 2009, 23(4): 1-6.
    [6]
    常胜利, 王晓峰, 邵铮铮. 太赫兹光谱技术原理及其应用[J]. 国防科技, 2015, 36(2):17-22. (Chang Shengli, Wang Xiaofeng, Shao Zhengzheng. Terahertz spectrum and its application[J]. National Defense Science & Technology, 2015, 36(2): 17-22
    [7]
    张栋文, 袁建民. 太赫兹技术概述[J]. 国防科技, 2015, 36(2):12-16. (Zhang Dongwen, Yuan Jianmin. Introduction to terahertz technology[J]. National Defense Science & Technology, 2015, 36(2): 12-16
    [8]
    姚建铨, 钟凯, 徐德刚. 太赫兹空间应用研究与展望[J]. 空间电子技术, 2013, 10(2):1-16. (Yao Jianquan, Zhong Kai, Xu Degang. Study and outlook of terahertz space applications[J]. Space Electronic Technology, 2013, 10(2): 1-16
    [9]
    郑灵, 赵青, 刘述章, 等. 太赫兹波在非磁化等离子体中的传输特性研究[J]. 物理学报, 2012, 61:245202. (Zheng Ling, Zhao Qing, Zhao Shuzhang, et al. Studies of terahertz wave propagation in non-magnetized plasma[J]. Acta Physica Sinica, 2012, 61: 245202
    [10]
    蒋金, 陈长兴, 汪成, 等. 太赫兹波在非均匀等离子体鞘套中的传播特性[J]. 系统仿真学报, 2015, 27(12):3109-3115. (Jiang Jin, Chen Changxing, Wang Cheng, et al. Properties of terahertz wave propagation in inhomogeneous plasma sheath[J]. Journal of System Simulation, 2015, 27(12): 3109-3115
    [11]
    周天翔, 陈长兴, 蒋金, 等. 太赫兹波在磁化等离子体中传输特性[J]. 强激光与粒子束, 2016, 28(7):97-101. (Zhou Tianxing, Chen Changxing, Jiangjin, et al. Terahertz wave propagation in magnetized plasma sheath[J]. High Power Laser and Particle Beams, 2016, 28(7): 97-101
    [12]
    马平, 秦龙, 石安华, 等. 毫米波与太赫兹波在等离子体中传输特性[J]. 强激光与粒子束, 2013, 25(11):2965-2970. (Ma Ping, Qin Long, Shi Anhua, et al. Millimeter wave and terahertz wave transmission characteristics in plasma[J]. High Power Laser and Particle Beams, 2013, 25(11): 2965-2970
    [13]
    Tian Y, Han Y P, Ling Y J, et al. Propagation of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency[J]. Physics of Plasmas, 2014, 21: 023301. doi: 10.1063/1.4864072
    [14]
    Guo L J, Guo L X, Li J T. Propagation of terahertz electromagnetic waves in a magnetized plasma with inhomogeneous electron density and collision frequency[J]. Physics of Plasmas, 2017, 24: 022108. doi: 10.1063/1.4973654
    [15]
    Liu S, Guo L, Pan W, et al. PO calculation for reduction in radar cross section of hypersonic targets using RAM[J]. Physics of Plasmas, 2018, 25: 062105. doi: 10.1063/1.5030194
    [16]
    Gnoffo P A, Gupta R N, Shinn J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[R]. NASA-TP-2867, 1989.
    [17]
    Nagaraj N, Lombard C, Bardina J. Navier-Stokes simulation of 3-D hypersonic equilibrium air flow[C]//23rd Thermophysics, Plasmadynamics and Lasers Conference. 1988: 2695.
    [18]
    Chen J, Yuan K, Shen L, et al. Studies of terahertz wave propagation in realistic reentry plasma sheath[J]. Progress in Electromagnetics Research, 2016, 157: 21-29. doi: 10.2528/PIER16061202
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (1743) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return