Volume 32 Issue 4
Mar.  2020
Turn off MathJax
Article Contents
Jia Wei, Chen Zhiqiang, Guo Fan, et al. Comparison of insulation properties of several liquid dielectrics under nanosecond pulses[J]. High Power Laser and Particle Beams, 2020, 32: 045001. doi: 10.11884/HPLPB202032.190338
Citation: Jia Wei, Chen Zhiqiang, Guo Fan, et al. Comparison of insulation properties of several liquid dielectrics under nanosecond pulses[J]. High Power Laser and Particle Beams, 2020, 32: 045001. doi: 10.11884/HPLPB202032.190338

Comparison of insulation properties of several liquid dielectrics under nanosecond pulses

doi: 10.11884/HPLPB202032.190338
  • Received Date: 2019-09-05
  • Rev Recd Date: 2019-11-29
  • Publish Date: 2020-03-06
  • Based on the self-developed nanosecond pulsed test platform with output voltage of 30 ns risetime and 100 ns half width, and the standard dielectric strength DC tester, the breakdown characteristics of four liquid dielectrics (transformer oil, glycerol, deionized water and Galden HT200) under DC and nanosecond pulses were experimentally studied and compared. The following conclusions were obtained: (1)Under both DC and nanosecond pulse, Galden HT200 has the highest breakdown field strength which is more than 40% higher than that of the transformer oil. (2) Under the nanosecond pulse, the breakdown field strength of Galden HT200 and transformer oil both increased by 6.5-7 times than those under DC. And it took the shortest time(nanosecond scale) for Galden HT200 to breakdown, followed by the transformer oil(20 ns), then glycerol(45 ns) and deionized water(70 ns). (3) After multiple breakdowns, a lot of carbonized discharge products were accumulated at the electrode gap in the glycerol which has the largest viscosity coefficient. However, there are no obvious breakdown traces in the Galden HT200 and deionized water, which both have the smaller viscosity coefficient. But obvious shock waves were observed in the Galden HT200 and deionized water, which make the gap electrodes  loose.

  • loading
  • [1]
    Ba um, C E. Reminiscences of high-power electromagnetic[J]. IEEE Transactions on electromagnetic compatibility, 2007, 49(2): 211-218. doi: 10.1109/TEMC.2007.897147
    [2]
    刘培国, 刘晨曦, 谭剑锋, 等. 强电磁防护技术研究进展[J]. 中国舰船研究, 2015, 10(2):2-6. (Liu Peiguo, Liu Chenxi, Tan Jianfeng, et al. Analysis of the research development on HPM/EMP protection[J]. Chinese Journal of Ship Research, 2015, 10(2): 2-6 doi: 10.3969/j.issn.1673-3185.2015.02.002
    [3]
    邓建球, 郝翠. 强电磁脉冲耦合与电源防护研究[J]. 微波学报, 2017, 33(6):85-89. (Deng Jianqiu, Hao Cui. Research on powerful electromagnetic pulse coupling and power source protection[J]. Journal of Microwaves, 2017, 33(6): 85-89
    [4]
    Shi Lihua. An overview of the HEMP research in China[J]. IEEE Transactions on Electromagnetic Compatibility, 2013(3): 422-430.
    [5]
    Wraight A, Prather W D. Developments in early-time (E1) high-altitude electromagnetic pulse(HEMP) test methods[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 492-499. doi: 10.1109/TEMC.2013.2241442
    [6]
    Giri D V, Prather W D. High-altitude electromagnetic pulse(HEMP) risetime evolution of technology and standards exclusive for E1 environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 1-8. doi: 10.1109/TEMC.2013.2266211
    [7]
    谢彦召, 王赞基, 王群书, 等. 基于频域幅度谱数据重建电磁脉冲时域波形[J]. 强激光与粒子束, 2004, 16(3):320-324. (Xie Yanzhao, Wang Zanji, Wang Qunshu, et al. Reconstruction of electromagnetic pulse wave based on the amplitude spectrum data[J]. High Power Laser and Particle Beams, 2004, 16(3): 320-324
    [8]
    朱长青, 刘尚合, 魏明. 强电磁脉冲的有效带宽、测量带宽及来自上升时间的影响[J]. 强激光与粒子束, 2005, 17(1):99-103. (Zhu Changqing, Liu Shanghe, Wei Ming. High-EMP effective bandwidth, measurement bandwidth and effect from rising time[J]. High Power Laser and Particle Beams, 2005, 17(1): 99-103
    [9]
    Nyffeler M, Jaquier A, Reusser B, et al. VERIFY, a threat level NEMP simulator with a 1 ns risetime[C]//America Electromagnetic. 2006.
    [10]
    张帆, 何鹏军, 孔亮, 等. 宽带强电磁脉冲模拟器发展及设计研究[J]. 强激光与粒子束, 2018, 30:013206. (Zhang Fan, He Pengjun, Kong Liang, et al. Survey and design study of mesoband high power electromagnetic pulse radiator[J]. High Power Laser and Particle Beams, 2018, 30: 013206
    [11]
    张晋琪, 蒋兴亮, 陈志刚. 液体介质快脉冲电压下击穿特性研究[J]. 强激光与粒子束, 2006, 18(6):1053-1056. (Zhang Jinqi, Jiang Xingliang, Chen Zhigang. Characteristics study of short-pulsed dielectric breakdown in liquids[J]. High Power Laser & Particle Beams, 2006, 18(6): 1053-1056
    [12]
    黄思思. 操作冲击电压作用下液体电介质的电场及空间电荷分布特性研究[D]. 重庆: 重庆大学, 2013.

    Huang Sisi. Study on electric field and space charge distribution characteristics in liquid dielectric under switching impulse voltage. Chongqing: Chongqing University, 2013
    [13]
    徐健. 高储能密度液体介质脉冲绝缘特性研究[D]. 长沙: 国防科学技术大学, 2014.

    Xu Jian. Study on the pulsed insulating characteristics of high energy storage density liquid dielectrics. Changsha: National University of Defense Technology, 2014
    [14]
    Martin T H, Guenther A H. J. C. Martin on pulsed power[M]. New York and London: Plenum Press, 1996.
    [15]
    荀涛, 杨汉武, 张建德, 等. 加速器电水锤数值模拟与实验研究[J]. 强激光与粒子束, 2010, 22(2):425-429. (Xun Tao, Yang Hanwu, Zhang Jiande, et al. Numerical and experimental investigation on water shocks due to pulsed discharge in accelerators[J]. High Power Laser and Particle Beams, 2010, 22(2): 425-429
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (1269) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return