Volume 32 Issue 5
Feb.  2020
Turn off MathJax
Article Contents
Lü Zeqi, Xie Yanzhao, Yang Hailiang. Comparison and analysis of the electromagnetic radiation, ionizing radiation and other physical technologies for disinfection and sterilization[J]. High Power Laser and Particle Beams, 2020, 32: 059001. doi: 10.11884/HPLPB202032.200077
Citation: Lü Zeqi, Xie Yanzhao, Yang Hailiang. Comparison and analysis of the electromagnetic radiation, ionizing radiation and other physical technologies for disinfection and sterilization[J]. High Power Laser and Particle Beams, 2020, 32: 059001. doi: 10.11884/HPLPB202032.200077

Comparison and analysis of the electromagnetic radiation, ionizing radiation and other physical technologies for disinfection and sterilization

doi: 10.11884/HPLPB202032.200077
  • Received Date: 2020-03-15
  • Rev Recd Date: 2020-04-07
  • Publish Date: 2020-02-10
  • Disinfection and sterilization technologies are of great significance in the food industry, medical field and water treatment, et al. Compared with traditional chemical and thermal methods, physical disinfection and sterilization approaches such as γ-rays, X-rays, electron beams, microwaves, low-temperature plasmas, ultraviolet rays and high-voltage pulsed electric fields have the advantages of no environmental pollution, low sterilization temperatures, no chemical residues, and so on. These physical disinfection and sterilization approaches are getting increasing concerns because of unique advantages. In this paper, the mechanisms of present physical disinfection and sterilization technics were summarized. The advantages and disadvantages of these physical means as well as their application areas are reviewed. Based on the superiorities and drawbacks of each method, different approaches should be adopted for the disinfection and sterilization of specific objects. Moreover, this paper highlights the trends on development of physical disinfection and sterilization approaches and proposes the extensive demands of the physical approaches on various aspects of our life.

  • loading
  • [1]
    Wholesomeness of irradiated foods: Report of a joint FAO/IAEA/WHO Expert Committee[R]. World Health Organization Technical Report, 1981, 659: 1-34.
    [2]
    Organization W H. High-dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy[R]. Report of a Joint FAO/IAEA/WHO Study Group. World Health Organization Technical Report, 1999, 890: i-vi, 1-197.
    [3]
    王晶晶. 电子束与γ射线辐照对象拔蚌微生物和品质影响的异同性[D]. 杭州: 浙江大学, 2016: 1-2.

    Wang Jingjing. Effects of electron beam and gamma ray irradiation on the microbial diversity and quality of commercial fresh geoduck clam (Panopea abrupta)[D]. Hangzhou: Zhejiang University, 2016: 1-2
    [4]
    段鑫. X射线对生鲜牛肉的杀菌效果[D]. 上海: 上海海洋大学, 2011: 3-8.

    Duan Xin. Effect of X-ray irradiation on the sterilization of fresh beef[D]. Shanghai: Shanghai Ocean University, 2011: 3-8
    [5]
    陈倩, 陈昭斌. 高能电子束辐照技术在消毒领域的应用[J]. 中国消毒学杂志, 2017, 34(10):966-969. (Chen Qian, Chen Zhaobin. Application of high energy electron beam irradiation in disinfection field[J]. Chinese Journal of Disinfection, 2017, 34(10): 966-969
    [6]
    夏文水, 钟秋平. 食品冷杀菌技术研究进展[J]. 中国食品卫生杂志, 2003, 15(6):539-544. (Xia Wenshui, Zhong Qiuping. Research progress in cold sterilization of foods[J]. Chinese Journal of Food Hygiene, 2003, 15(6): 539-544 doi: 10.3969/j.issn.1004-8456.2003.06.022
    [7]
    宋卫东, 张宏娜, 陈海军, 等. 辐照在食品加工中的作用及应用[J]. 食品工业科技, 2011, 32(9):454-457. (Song Weidong, Zhang Hongna, Chen Haijun, et al. Quality assurance and case study of food irradiation by γ-ray[J]. Science and Technology of Food Industry, 2011, 32(9): 454-457
    [8]
    邓文敏, 陈浩, 裴颖, 等. 高能电子加速器在食品辐照加工中的应用分析[J]. 核农学报, 2012, 26(6):919-923. (Deng Wenmin, Chen Hao, Pei Ying, et al. The application analysis of high energy electron accelerator in food irradiation processing[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(6): 919-923 doi: 10.11869/hnxb.2012.06.0919
    [9]
    王斐. 辐射加工用电子直线加速器控制系统的研究[D]. 北京: 机械科学研究总院, 2018: 6-10.

    Wang Fei. Research of electron linear accelerator control system for radiation processing[D]. Beijing: China Academy of Machinery Science and Technology Group Co., Ltd, 2018: 6-10.
    [10]
    史戎坚. 电子加速器工业应用导论[M]. 北京: 中国质检出版社, 2012.

    Shi Rongjian. An introduction to electron accelerators and industrial applications[M]. Beijing: China Quality and Standards Press, 2012
    [11]
    邓桥, 陈昭斌. 高能电子束在医疗卫生用品消毒中的应用[J]. 中国消毒学杂志, 2018, 35(12):943-945. (Deng Qiao, Chen Zhaobin. Application of high energy electron beam in disinfection of medical and sanitary products[J]. Chinese Journal of Disinfection, 2018, 35(12): 943-945 doi: 10.11726/j.issn.1001-7658.2018.12.019
    [12]
    单张生. NBL-1010型电子加速器的辐照应用[J]. 核农学报, 2000, 14(6):353-358. (Shan Zhangsheng. Irradiation application of NBL-1010 electron accelerator[J]. Journal of Nuclear Agricultural Sciences, 2000, 14(6): 353-358 doi: 10.3969/j.issn.1000-8551.2000.06.007
    [13]
    王梁燕, 洪奇华, 孙志明, 等. 电子束辐照技术在生命科学中的应用[J]. 核农学报, 2018, 32(2):283-290. (Wang Liangyan, Hong Qihua, Sun Zhiming, et al. Application of electron beam irradiation technology in life sciences[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(2): 283-290 doi: 10.11869/j.issn.100-8551.2018.02.0283
    [14]
    Rostov V V, Barmin V V, Landl V F, et al. High-current pulsed-repetitive electron accelerator “SINUS-320”: Formation and diagnostics of a wide-aperture beam[J]. Russian Physics Journal, 2019, 62(7): 1253-1259. doi: 10.1007/s11182-019-01842-5
    [15]
    孙俊. 微波消毒技术在医疗废物集中处理工程中的应用[J]. 环境保护科学, 2007, 33(4):84-86. (Sun Jun. Application of microwave disinfection technique in medical waste centralized treatment engineering[J]. Environmental Protection Science, 2007, 33(4): 84-86 doi: 10.3969/j.issn.1004-6216.2007.04.027
    [16]
    杨国峰, 周建新. 食品微波杀菌有关问题的探讨[J]. 食品科学, 2006, 27(10):593-596. (Yang Guofeng, Zhou Jianxin. Some discussions on microwave disinfect in food processing[J]. Food Science, 2006, 27(10): 593-596 doi: 10.3321/j.issn:1002-6630.2006.10.152
    [17]
    Bohr H, Bohr J. Microwave-enhanced folding and denaturation of globular proteins[J]. Physical Review E, 2000, 61(4): 4310-4314. doi: 10.1103/PhysRevE.61.4310
    [18]
    Velizarov S, Raskmark P, Kwee S. The effects of radiofrequency fields on cell proliferation are non-thermal[J]. Bioelectrochemistry and Bioenergetics, 1999, 48(1): 177-180. doi: 10.1016/S0302-4598(98)00238-4
    [19]
    Kozempel M F, Annous B A, Cook R D, et al. Inactivation of microorganisms with microwaves at reduced temperatures[J]. Journal of Food Protection, 1998, 61(5): 582-585. doi: 10.4315/0362-028X-61.5.582
    [20]
    史亚歌. 冷烟熏三文鱼热处理动力学及微波杀菌技术研究[D]. 杨凌: 西北农林科技大学, 2015: 7-8.

    SHI Yage. Thermal treatment kinetics and microwave pasteurization technique of cold smoked salmon[D]. Yangling: Northwest A&F University, 2015: 7-8
    [21]
    樊伟伟, 黄慧华. 微波杀菌技术在食品工业中的应用[J]. 食品与机械, 2007, 23(1):143-147. (Fan Weiwei, Huang Huihua. Application of microwave sterilization in food industry[J]. Food & Machinery, 2007, 23(1): 143-147 doi: 10.3969/j.issn.1003-5788.2007.01.042
    [22]
    贾建平, 刘克富, 朱业湘, 等. 大气压下低温等离子体灭菌消毒技术的研究[J]. 高电压技术, 2007, 33(2):116-119. (Jia Jianping, Liu Kefu, Zhu Yexiang, et al. Sterilization by non-thermal plasma at an atmospheric pressure[J]. High Voltage Engineering, 2007, 33(2): 116-119 doi: 10.3969/j.issn.1003-6520.2007.02.028
    [23]
    李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12):3697-3727. (Li Heping, Yu Daren, Sun Wenting, et al. State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727
    [24]
    王新新. 介质阻挡放电及其应用[J]. 高电压技术, 2009, 35(1):1-11. (Wang Xinxin. Dielectric barrier discharge and its applications[J]. High Voltage Engineering, 2009, 35(1): 1-11
    [25]
    金杞糠. 脉冲低温等离子体射流用于灭菌和凝血的实验研究[D]. 杭州: 浙江大学, 2018: 3-9.

    Jin Qikang. Experimental study on microorganism disinfection and blood coagulation using a pulsed cold plasma jet[D]. Hangzhou: Zhejiang University, 2018: 3-9.
    [26]
    郑超. 低温等离子体和脉冲电场灭菌技术[D]. 杭州: 浙江大学, 2013: 26-29.

    Zheng Chao. Non-thermal plasma and pulsed electric field induced disinfection[D]. Hangzhou: Zhejiang University, 2013: 26-29
    [27]
    Moisan M, Barbeau J, Moreau S, et al. Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms[J]. International Journal of Pharmaceutics, 2001, 226(1/2): 1-21.
    [28]
    赵会超, 低温等离子体技术应用研究[D]. 南京: 南京航空航天大学, 2013: 28-29.

    ZHAO Huichao. Research on application of low temperature plasma technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 28-29.
    [29]
    Halfmann H, Denis B, Bibinov N, et al. Identification of the most efficient VUV/UV radiation for plasma based inactivation of Bacillus atrophaeus spores[J]. Journal of Physics D: Applied Physics, 2007, 40(19): 5907-5911. doi: 10.1088/0022-3727/40/19/019
    [30]
    Kong M G, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review[J]. New Journal of Physics, 2009, 11: 115012. doi: 10.1088/1367-2630/11/11/115012
    [31]
    Laroussi M, Leipold F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure[J]. International Journal of Mass Spectrometry, 2004, 233(1-3): 81-86. doi: 10.1016/j.ijms.2003.11.016
    [32]
    贾建平. 介质阻挡放电等离子体灭菌消毒实验研究[D]. 武汉: 华中科技大学, 2007: 51-52.

    Jia Jianping. Sterilization by non-thermal plasma with the dielectric barrier discharge[D]. Wuhan: Huazhong University of Science & Technology, 2007: 51-52.
    [33]
    Fridman G, Brooks A D, Balasubramanian M, et al. Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria[J]. Plasma Processes and Polymers, 2007, 4(4): 370-375. doi: 10.1002/ppap.200600217
    [34]
    Guo J, Huang K, Wang J. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: A review[J]. Food Control, 2015, 50(4): 482-490.
    [35]
    张晔, 刘志伟, 谭兴和, 等. 冷等离子体食品杀菌应用研究进展[J]. 中国酿造, 2019, 38(1):20-24. (Zhang Ye, Liu Zhiwei, Tan Xinghe, et al. Research progress of cold plasma application in food sterilization[J]. China Brewing, 2019, 38(1): 20-24 doi: 10.11882/j.issn.0254-5071.2019.01.005
    [36]
    王莹莹. 电机系举办首期“云上论电”线上学术报告会[EB/OL]. https://mp.weixin.qq.com/s/6b9rHlps5pnB63TVwr1PTw.
    [37]
    周明, 彭楠, 代强, 等. 高强度紫外线对临床常见致病菌的杀灭效果观察[J]. 中国消毒学杂志, 2015, 32(3):219-221. (Zhou Ming, Peng Nan, Dai Qiang, et al. Observation on disinfection effect of clinical common pathogens by high strength UV irradiation[J]. China Journal of Disinfection, 2015, 32(3): 219-221
    [38]
    Lee C H, Wu S B, Hong C H, et al. Molecular mechanisms of UV-induced apoptosis and its effects on skin residential cells: The implication in UV-based phototherapy[J]. International Journal of Molecular Sciences, 2013, 14(3): 6414-6435. doi: 10.3390/ijms14036414
    [39]
    孙文俊. 饮用水紫外线消毒生物安全性研究[D]. 北京: 清华大学, 2010: 4-6.

    Sun Wenjun. Study on the biological safety of drinking water following UV disinfection[D]. Beijing: Tsinghua University, 2010: 4-6
    [40]
    Pfeifer G P. Formation and processing of UV photoproducts: Effects of DNA sequence and chromatin environment[J]. Photochemistry and Photobiology, 1997, 65(2): 270-283. doi: 10.1111/j.1751-1097.1997.tb08560.x
    [41]
    Knudson G B. Photoreactivation of UV-irradiated legionella pneumophila and other legionella species[J]. Applied and Environmental Microbiology, 1985, 49(4): 975-980. doi: 10.1128/AEM.49.4.975-980.1985
    [42]
    王俊娇, 吕鑑, 张英, 等. 紫外线持续消毒能力的研究[J]. 工业用水与废水, 2006, 37(4):44-46. (Wang Junjiao, Lü Jian, Zhang Ying, et al. Persistent disinfection ability of ultraviolet radiation[J]. Industrial Water and Wastewater, 2006, 37(4): 44-46 doi: 10.3969/j.issn.1009-2455.2006.04.012
    [43]
    陈大华, 杨澄学. 紫外线汞灯及其在消毒中的应用[J]. 中国照明电器, 2009(9):19-22. (Chen Dahua, Yang Chengxue. The disinfectant ultraviolet mercury lamps and its applications in the sterilization[J]. China Light and Lighting, 2009(9): 19-22 doi: 10.3969/j.issn.1002-6150.2009.09.005
    [44]
    何志明, 廖辉, 晏波元. 低压高强紫外线灯温度特性及在水处理中的应用[J]. 中国照明电器, 2015(2):18-20. (He Zhiming, Liao Hui, Yan Boyuan, et al. Temperature property of low pressure high output ultraviolet lamp and the application in water treatment[J]. China Light and Lighting, 2015(2): 18-20 doi: 10.3969/j.issn.1002-6150.2015.02.005
    [45]
    李江. 紫外线消毒技术的研究[D]. 天津: 天津大学, 2003: 11-13.

    Li Jiang. Study on ultraviolet germicidal irradiation(UVGI)[D]. Tianjin: Tianjin University, 2003: 11-13
    [46]
    张艳. 紫外消毒模型开发与设备优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 2-3.

    Zhang Yan. Development of UV disinfection model and equipment optimization[D]. Harbin: Harbin Institute of Technology, 2010: 2-3
    [47]
    Sale A, Hamilton W. Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts[J]. Biochemical and Biophysical, 1967, 148(3): 781-788.
    [48]
    Zimmermann U. Electrical breakdown electropermeabilization and electrofusion[J]. Reviews of Physiology, Biochemistry and Pharmacology, 1986, 105(6): 176-256.
    [49]
    Tsong T. Electroporation of cell membranes[J]. Biophysical Journal, 1991, 60(2): 297-306. doi: 10.1016/S0006-3495(91)82054-9
    [50]
    丁宏伟. 高压脉冲电场对牛乳的杀菌灭酶研究[D]. 长春: 吉林大学, 2006: 8-9.

    Ding Hongwei. Study on sterilization and killing enzyme of milk by high intensity pulsed electric fields (PEF)[D]. Changchun: Jilin University, 2006: 8-9
    [51]
    邵帅. 医疗垃圾预处理器具设计研究[D]. 武汉: 湖北工业大学, 2019: 17-18.

    Shao Shuai. Design and research of medical waste preprocessor[D]. Wuhan: Hubei University of Technology, 2019: 17-18
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article views (2236) PDF downloads(245) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return