Volume 32 Issue 10
Sep.  2020
Turn off MathJax
Article Contents
Zhang Changqing, Feng Jinjun, Cai Jun, et al. Design of G-band 500 W sheet beam extended-interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103003. doi: 10.11884/HPLPB202032.200195
Citation: Zhang Changqing, Feng Jinjun, Cai Jun, et al. Design of G-band 500 W sheet beam extended-interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103003. doi: 10.11884/HPLPB202032.200195

Design of G-band 500 W sheet beam extended-interaction klystron

doi: 10.11884/HPLPB202032.200195
  • Received Date: 2020-07-10
  • Rev Recd Date: 2020-08-25
  • Publish Date: 2020-09-29
  • High power generation in terahertz frequency band is limited by physical mechanism. A G-band sheet beam extended-interaction klystron was designed to demonstrate the power level and the physical factors that affect the performance of the klystron. An elliptical electron beam with a voltage of 24.5 kV, a current of 0.6 A and the dimension of 1 mm×0.15 mm was used. To match the size of the sheet beam and obtain high efficiency and high gain, the transverse-oversized barbell type multi-gap resonant cavity was used as the interaction circuit. The 3D PIC simulation results show that more than 500 W of power output can be obtained with the actual cavity loss considered, and the electron efficiency and gain are 3.65% and 38.2 dB respectively. It is found that the power and efficiency are largely restricted by the mode stability of the multi-gap cavity as well as the ohmic loss. The ohmic loss of the output cavity has a significant effect on the final output power which should be given special consideration in engineering design. The research in this paper has laid a good foundation for the development of high frequency sheet beam extended-interaction devices.
  • loading
  • [1]
    Chodorow M, Wessel-Berg T. A high-efficiency klystron with distributed interaction[J]. IRE Trans Electron Devices, 1961, 8(1): 44-55. doi: 10.1109/T-ED.1961.14708
    [2]
    Chernin D, Burke A, Chernyavskiy I, et al. Extended Interaction Klystrons for terahertz power amplifiers[C]// IEEE International Vacuum Electronics Conference. 2010: 217-218.
    [3]
    Berry D, Deng H, Dobbs R, et al. Practical aspects of EIK technology[J]. IEEE Trans Electron Devices, 2014, 61(6): 1830-1935. doi: 10.1109/TED.2014.2302741
    [4]
    Roitman A, Horoyski P, Dobbs R, et al. Space-borne EIK technology[C]// IEEE International Vacuum Electronics Conference. 2014.
    [5]
    Steer B, Roitman A, Horoyski P, et al. Millimeter-wave Extended Interaction Klystrons for high power ground, airborne and space radars[C]//IEEE Microwave Conference. 2011.
    [6]
    丁耀根, 刘濮鲲, 张兆传, 等. 大功率微波真空电子器件的应用[J]. 强激光与粒子束, 2011, 23(8):1989-1995. (Ding Yaogen, Liu Pukun, Zhang Zhaochuan, et al. Application of high power microwave vacuum electron devices[J]. High Power Laser and Particle Beams, 2011, 23(8): 1989-1995 doi: 10.3788/HPLPB20112308.1989
    [7]
    Horoyski P, Berry D, Steer B. A 2 GHz bandwidth, high power W-band Extended Interaction Klystron[C]//IEEE International Vacuum Electronics Conference. 2007.
    [8]
    Steer B, Horoyski P, Roitman A, et al. A 263 GHz 10 Watt pulsed Extended Interaction Klystron Amplifier[C]//IEEE International Conference on Infrared, Millimeter, & Terahertz Waves. 2013.
    [9]
    Pasour J, Wright E, Nguyen K T, et al. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz[J]. IEEE Trans Electron Devices, 2014, 61(6): 1630-1636. doi: 10.1109/TED.2013.2295771
    [10]
    Nguyen Khanh T, Pasour J, Wright E L, et al. Design of a G-band sheet-beam Extended-Interaction Klystron[C]//IEEE International Vacuum Electronics Conference. 2009.
    [11]
    Zhao Jinfeng, Gamzina D, Li Na, et al. Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun[J]. IEEE Trans Electron Devices, 2012, 59(6): 1792-1798. doi: 10.1109/TED.2012.2190294
    [12]
    Zhao Ding, Lu Xi, Liang Yuan, et al. Researches on an X-band sheet beam klystron[J]. IEEE Trans Electron Devices, 2014, 61(1): 151-158. doi: 10.1109/TED.2013.2291781
    [13]
    Yu D, Verdes R P, Wilson P. Sheet-beam klystron RF cavities[C]//Particle Accelerator Conference IEEE. 1993, 4: 2681–2683.
    [14]
    LüSuye, Zhang Changqing, Wang Shuzhong, et al. Stability analysis of a planar multiple-beam circuit for W-band high-power extended-interaction klystron[J]. IEEE Trans Electron Devices, 2015, 62(9): 3042-3048. doi: 10.1109/TED.2015.2435031
    [15]
    LüSuye, Zhang Changqing, Yu Ge, et al. Analysis of the field shape and mode competition for the higher order modes in the oversized multigap resonant cavity with coplanar beams[J]. IEEE Trans Plasma Science, 2019, 47(4): 1742-1748. doi: 10.1109/TPS.2019.2902350
    [16]
    Main W, Carmel Y, Ogura K, et al. Electromagnetic properties of open and closed overmoded slow-wave resonators for interaction with relativistic electron beams[J]. IEEE Trans Plasma Science, 1994, 22(5): 566-577. doi: 10.1109/27.338269
    [17]
    Shin Y M, Wang J X, Barnett L R, et al. Particle-in-cell simulation analysis of a multicavity W-band sheet beam klystron[J]. IEEE Trans Electron Devices, 2010, 58(1): 251-258. doi: 10.1109/TED.2010.2082544
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article views (1537) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return