Volume 32 Issue 10
Sep.  2020
Turn off MathJax
Article Contents
Zhang Jun, Zhang Wei, Ju Jinchuan, et al. Research of X-band high power triaxial klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103001. doi: 10.11884/HPLPB202032.200228
Citation: Zhang Jun, Zhang Wei, Ju Jinchuan, et al. Research of X-band high power triaxial klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103001. doi: 10.11884/HPLPB202032.200228

Research of X-band high power triaxial klystron amplifier

doi: 10.11884/HPLPB202032.200228
  • Received Date: 2020-09-08
  • Rev Recd Date: 2020-09-09
  • Publish Date: 2020-09-29
  • To achieve GW-level amplification output radiation at X-band, a relativistic triaxial klystron amplifier (TKA) with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW radio-frequency signal injection. Meanwhile, there is insignificant self-excitation of parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier became saturated.
  • loading
  • [1]
    Varia K R. Power combining in a single multiple-diode cavity[J]. IEEE MTT-S, Int Microwave Symp Dig, 1978: 344-345.
    [2]
    Ma Y, Sun C. 1-W millimeter-wave Gunn diode combiner[J]. IEEE Trans Microwave Theory and Techniques, 1980, 28(12): 1460-1463. doi: 10.1109/TMTT.1980.1130267
    [3]
    石成才, 刘大刚, 蒙林. 互耦相对论返波管等同锁相和功率放大的粒子模拟[J]. 强激光与粒子束, 2012, 24(1):129-132. (Shi Chengcai, Liu Dagang, Meng Lin. Particle simulation of peer-to-peer locking and power amplification for mutually coupled relativistic BWOs[J]. High Power Laser and Particle Beams, 2012, 24(1): 129-132 doi: 10.3788/HPLPB20122401.0129
    [4]
    Friedman M, Krall J, Lau Y Y, et al. Externally modulated intense relativistic electron beams[J]. J Appl Phys, 1988, 64(7): 3353-3379. doi: 10.1063/1.341521
    [5]
    Friedman M, Fernsler R, Slinker S, et al. Efficient conversion of the energy of intense relativistic electron beams into RF waves[J]. Phys Rev Lett, 1995, 75(6): 1214-1217. doi: 10.1103/PhysRevLett.75.1214
    [6]
    吴涛, 黄华, 王淦平, 等. 扇形多注强流相对论电子束的产生与传输研究[J]. 物理学报, 2012, 61:184218. (Wu Tao, Huang Hua, Wang Ganping, et al. The generation and transmission research of the fan-shaped multi-beam intense relativistic electron beams[J]. Acta Physica Sinica, 2012, 61: 184218
    [7]
    刘振帮, 金晓, 黄华, 等. 强流多注相对论速调管中电子束特性的初步研究[J]. 物理学报, 2012, 61:248401. (Liu Zhenbang, Jin Xiao, Huang Hua. Preliminary study of the characteristic of multi-beam in intense multi-beam relativistic klystron[J]. Acta Physica Sinica, 2012, 61: 248401
    [8]
    刘振帮, 金晓, 黄华, 等. X波段长脉冲同轴多注相对论速调管放大器的分析与设计[J]. 物理学报, 2012, 61:128401. (Liu Zhenbang, Jin Xiao, Huang Hua. Analysis and design of X-band coaxial multi-beam relativistic klystron amplifier[J]. Acta Physica Sinica, 2012, 61: 128401
    [9]
    Qi Zumin, Zhang Jun, Zhong Huihuang, et al. A non-uniform three-gap buncher cavity with suppression of transverse-electromagnetic mode leakage in the triaxial klystron amplifier[J]. Phys Plasmas, 2014, 21: 013107. doi: 10.1063/1.4862557
    [10]
    Qi Zumin, Zhang Jun, Zhong Huihuang, et al. An improved suppression method of the transverse-electromagnetic mode leakage with two reflectors in the triaxial klystron amplifier[J]. Phys Plasmas, 2014, 21: 073103. doi: 10.1063/1.4889901
    [11]
    Ju Jinchuan, Zhang Jun, Qi Zumin, et al. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier[J]. Sci Rep, 2016, 6: 30657. doi: 10.1038/srep30657
    [12]
    Carlsten B E. A self consistent numerical analysis of klystrons using large signal beam wave interaction simulations[D]. Stanford: Stanford University, 1985.
    [13]
    Zhang Zehai, Shu Ting, Zhang Jun, et al. Matching conditions of the on the cavity absorbing property under intense beam loading[J]. IEEE Trans Plasma Science, 2012, 40(11): 3121-3126. doi: 10.1109/TPS.2012.2212285
    [14]
    Pasour J, Smithe D, Ludeking L. X-band triaxial klystron[C]//6th Workshop of High Energy Density and High Power RF. 2003: 141-150.
    [15]
    Zhu Jianhui, Xie Yongjie, Zhou Xiaofeng, et al. Analysis on the mechanism of pulse-shortening in an X-band triaxial klystron amplifier due to the asymmetric mode competition[J]. Phys Plasmas, 2016, 23: 123103. doi: 10.1063/1.4969079
    [16]
    Qi Zumin, Zhang Ju, Zhang Qiang, et al. Design and experimental demonstration of a long-pulse, X-band triaxial klystron amplifier with an asymmetric input cavity[J]. IEEE Electron Device Lett, 2016, 37(6): 782-784.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)

    Article views (1559) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return