Volume 33 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Long Wenjun, Zheng Lei, Zhao Rui, et al. Heat reversal phenomenon of spray cooling and its heat transfer enhancement characteristics[J]. High Power Laser and Particle Beams, 2021, 33: 101001. doi: 10.11884/HPLPB202133.210101
Citation: Long Wenjun, Zheng Lei, Zhao Rui, et al. Heat reversal phenomenon of spray cooling and its heat transfer enhancement characteristics[J]. High Power Laser and Particle Beams, 2021, 33: 101001. doi: 10.11884/HPLPB202133.210101

Heat reversal phenomenon of spray cooling and its heat transfer enhancement characteristics

doi: 10.11884/HPLPB202133.210101
  • Received Date: 2021-03-22
  • Rev Recd Date: 2021-09-15
  • Available Online: 2021-10-08
  • Publish Date: 2021-10-15
  • Aiming at the requirements of the heat dissipation for high heat flux laser medium, an experimental platform was designed and built. The spray cooling of heat transfer enhancement experiment with different concentrations of sodium dodecyl sulfate aqueous solution as the working fluid was studied. The results show that within a specific range of heat flux density, as the heat flux density increases, the temperature of the heating surface does not rise but drops, which was named heat reversal. The heat reversal phenomenon increased the convective heat transfer coefficient by as much as 94.0%. The heat flux density range corresponding to heat reversal was 80−130 W/cm2, which had a weak relationship with concentration. This means that, in spray cooling, an increment in heat load can cause a temperature drop of the heated surface under certain circumstances. This phenomenon only occured when the heat flux density was gradually increasing, and it was not found in the process of reducing and adjusting the heat flux density. Surfactant boiling in the pool will also cause thermal reversal, but the specific reason remains to be studied.
  • loading
  • [1]
    杨春光, 张浩, 刘军. 开式单喷嘴喷雾冷却均匀性实验研究[J]. 强激光与粒子束, 2020, 32:071004. (Yang Chunguang, Zhang Hao, Liu Jun. Experimental investigation on cooling uniformity of open single nozzle spray[J]. High Power Laser and Particle Beams, 2020, 32: 071004
    [2]
    张雨薇, 刘妮, 王可. 喷雾冷却换热机理研究进展[J]. 电子元件与材料, 2016, 35(11):1-5. (Zhang Yuwei, Liu Ni, Wang Ke. Research progress on heat transfer mechanism of spray cooling[J]. Electronic Component and Materials, 2016, 35(11): 1-5
    [3]
    张雨薇, 刘妮. 含有添加剂的喷雾冷却研究进展[J]. 电子元件与材料, 2016, 35(1):18-22. (Zhang Yuwei, Liu Ni. Research progress of spray cooling with surfactant[J]. Electronic Component and Materials, 2016, 35(1): 18-22
    [4]
    Hendricks T J, Krishnan S, Choi C, et al. Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3357-3365.
    [5]
    程文龙, 赵锐, 韩丰云, 等. 封闭式喷雾冷却传热特性的实验与理论研究[J]. 宇航学报, 2010, 31(6):1666-1671. (Cheng Wenlong, Zhao Rui, Han Fengyun, et al. Experimental and theoretical analysis of heat transfer characteristics of spray cooling in a closed loop[J]. Journal of Astronautics, 2010, 31(6): 1666-1671 doi: 10.3873/j.issn.1000-1328.2010.06.026
    [6]
    Gradeck M, Ouattara A, Maillet D, et al. Heat transfer associated to a hot surface quenched by a jet of oil-in-water emulsion[J]. Experimental Thermal and Fluid Science, 2011, 35(5): 841-847. doi: 10.1016/j.expthermflusci.2010.07.002
    [7]
    Mohapatra S S, Ravikumar S V, Verma A, et al. Experimental investigation of effect of a surfactant to increase cooling of hot steel plates by a water jet[J]. Journal Heat Transfer, 2013, 135: 032101. doi: 10.1115/1.4007878
    [8]
    Bhatt N H, Pati A R, Kumar A, et al. High mass flux spray cooling with additives of low specific heat and surface tension: a novel process to enhance the heat removal rate[J]. Applied Thermal Engineering, 2017, 120: 537-548. doi: 10.1016/j.applthermaleng.2017.03.137
    [9]
    Cheng Wenlong, Xie Biao, Han Fengyun, et al. An experimental investigation of heat transfer enhancement by addition of high-alcohol surfactant (HAS) and dissolving salt additive (DSA) in spray cooling[J]. Experimental Thermal and Fluid Science, 2013, 45: 198-202. doi: 10.1016/j.expthermflusci.2012.11.005
    [10]
    Horacek B, Kiger K T, Kim J. Single nozzle spray cooling heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2005, 48(8): 1425-1438. doi: 10.1016/j.ijheatmasstransfer.2004.10.026
    [11]
    Nguyen C T, Roy G, Gauthier C, et al. Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system[J]. Applied Thermal Engineering, 2007, 27(8/9): 1501-1506.
    [12]
    Mohapatra S S, Ravikumar S V, Andhare S, et al. Experimental study and optimization of air atomized spray with surfactant added water to produce high cooling rate[J]. Journal of Enhanced Heat Transfer, 2012, 19(5): 397-408. doi: 10.1615/JEnhHeatTransf.2012004285
    [13]
    Sanjeev A. Computational study of surfactant-induced modification of droplet impact dynamics and heat transfer on hydrophobic and hydrophilic surfaces[D]. Cincinnati: University of Cincinnati, 2008.
    [14]
    李依一, 程文龙, 赵锐. 分散剂对纳米流体喷雾冷却传热特性影响的试验研究[J]. 流体机械, 2020, 48(12):58-61, 79. (Li Yiyi, Cheng Wenlong, Zhao Rui. Experimental study on the effect of dispersants on the spray cooling heat transfer of nanofluid[J]. Fluid Machinery, 2020, 48(12): 58-61, 79 doi: 10.3969/j.issn.1005-0329.2020.12.010
    [15]
    周定伟, 马重芳, 刘登瀛. 强润湿性液体起沸状态的实验及理论研究[J]. 应用基础与工程科学学报, 2001, 9(1):68-73. (Zhou Dingwei, Ma Chongfang, Liu Dengying. Experimental and theoretical study on incipient boiling condition of highly-wetting liquids[J]. Journal of Basic Science and Engineering, 2001, 9(1): 68-73 doi: 10.3969/j.issn.1005-0930.2001.01.010
    [16]
    Bar-Cohen A, Simon T W. Wall superheat excursions in the boiling incipience of dielectric fluids[J]. Heat Transfer Engineering, 1988, 9(3): 19-31. doi: 10.1080/01457638808939668
    [17]
    纪献兵, 徐进良. 表面活性剂对池沸腾换热的影响[J]. 工程热物理学报, 2008, 29(12):2049-2052. (Ji Xianbing, Xu Jinliang. Effect of surfactant additive on pool boiling heat transfer[J]. Journal of Engineering Thermophysics, 2008, 29(12): 2049-2052 doi: 10.3321/j.issn:0253-231X.2008.12.018
    [18]
    王磊. 阴离子型Gemini表面活性剂的合成及性能研究[D]. 西安: 西安工程大学, 2012.

    Wang Lei. Study on synthesis and property of anionic Gemini surfactants[D]. Xi’an: Xi'an Polytechnic University, 2012
    [19]
    王磊, 陶毓伽, 淮秀兰, 等. 添加表面活性剂的喷雾冷却实验研究[J]. 激光与光电子学进展, 2009, 46(10):92-95. (Wang Lei, Tao Yujia, Huai Xiulan, et al. Experimental investigation of surfactant effects in spray cooling[J]. Laser & Optoelectronics Progress, 2009, 46(10): 92-95
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (795) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return