Volume 36 Issue 4
Feb.  2024
Turn off MathJax
Article Contents
Liu Wencong, Liang Yuanlong, Huang Xianjun, et al. Coupling analysis and reinforcement method of high electromagnetic pulse in typical optoelectronic systems[J]. High Power Laser and Particle Beams, 2024, 36: 043010. doi: 10.11884/HPLPB202436.230321
Citation: Liu Wencong, Liang Yuanlong, Huang Xianjun, et al. Coupling analysis and reinforcement method of high electromagnetic pulse in typical optoelectronic systems[J]. High Power Laser and Particle Beams, 2024, 36: 043010. doi: 10.11884/HPLPB202436.230321

Coupling analysis and reinforcement method of high electromagnetic pulse in typical optoelectronic systems

doi: 10.11884/HPLPB202436.230321
  • Received Date: 2023-09-18
  • Accepted Date: 2024-01-04
  • Rev Recd Date: 2024-01-04
  • Available Online: 2024-01-15
  • Publish Date: 2024-02-29
  • With the increasing complexity of the electromagnetic environment, the threats posed of electromagnetic weapons to electronic equipment are becoming increasingly serious. As a sensitive integrated electronic device, the optoelectronic system is coupled with high-power electromagnetic pulse energy. This can disrupt the normal operation of the optoelectronic system, especially when it lacks sufficient electromagnetic protection. To clarify the high-power microwave coupling process of typical optoelectronic systems including barrel type, side window type, multi-window type under different irradiation conditions, simulations and analyses are conducted. The characteristics of high-power microwave coupling in optoelectronic systems and their constraints are extracted. The necessity and urgency of protecting reinforcing optoelectronic systems with high-power microwave are verified. For addressing the issue of weak high-power microwave protection ability in optoelectronic systems, the simulation analysis verifies the effectiveness of reinforcing transparent electromagnetic protection windows for high-power microwave. The study focuses in the method of electromagnetic gap protection and reinforcement, which is based on the support step and the conductive side wall. The key parameters of the installation structure for the gap coupling leakage of transparent electromagnetic protection windows are analyzed, and a method of non-electric contact assembly gap high-power microwave protection and reinforcement method is proposed. When the length of the gap protection structure is 6 mm, the average high-power microwave protection efficiency of the 0.2−4 GHz optoelectronic system increases by 4.51 dB. The study provides theoretical guidance and specific solutions for enhancing the high-power microwave protection capability of optoelectronic systems.
  • loading
  • [1]
    刘培国, 刘晨曦, 谭剑锋, 等. 强电磁防护技术研究进展[J]. 中国舰船研究, 2015, 10(2):2-6 doi: 10.3969/j.issn.1673-3185.2015.02.002

    Liu Peiguo, Liu Chenxi, Tan Jianfeng, et al. Analysis of the research development on HPM/EMP protection[J]. Chinese Journal of Ship Research, 2015, 10(2): 2-6 doi: 10.3969/j.issn.1673-3185.2015.02.002
    [2]
    刘培国, 刘翰青, 王轲. 石墨烯材料在舰船强电磁防护技术中的应用[J]. 中国舰船研究, 2020, 15(4):1-8

    Liu Peiguo, Liu Hanqing, Wang Ke. Application of graphene in strong electromagnetic protection technology for ships[J]. Chinese Journal of Ship Research, 2020, 15(4): 1-8
    [3]
    龚芳海, 李刚. 外军预警装备电子防护关键技术与运用研究[J]. 现代雷达, 2021, 43(7):54-62

    Gong Fanghai, Li Gang. A study on key technologies and application of electronic protection of foreign military early warning equipment[J]. Modern Radar, 2021, 43(7): 54-62
    [4]
    徐哲, 黄珏. 舰船电子信息装备强电磁脉冲防护技术发展[J]. 舰船电子对抗, 2021, 44(4):35-38,93

    Xu Zhe, Huang Jue. Protection technology development of ship electronic information equipment to strong electromagnetic pulse[J]. Shipboard Electronic Countermeasure, 2021, 44(4): 35-38,93
    [5]
    郭家祥, 谢润章, 王鹏, 等. 多维度红外光电探测器[J]. 红外与毫米波学报, 2022, 41(1):40-60

    Guo Jiaxiang, Xie Runzhang, Wang Peng, et al. Infrared photodetectors for multidimensional optical information acquisition[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 40-60
    [6]
    王永胜, 李伟, 郭文卿. 强电磁环境下无人机的电磁防护技术[J]. 安全与电磁兼容, 2020(5):95-99

    Wang Yongsheng, Li Wei, Guo Wenqing. Protection technology of UAV in strong electromagnetic environment[J]. Safety & EMC, 2020(5): 95-99
    [7]
    谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3):231-242

    Tan Zhiliang, Li Yanan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 231-242
    [8]
    牛佳佳, 刘铭, 邢伟荣, 等. 基于低维材料的光电探测器的发展[J]. 红外, 2022, 43(3):8-15,21

    Niu Jiajia, Liu Ming, Xing Weirong, et al. Development of photoelectric detectors based on low-dimensional materials[J]. Infrared, 2022, 43(3): 8-15,21
    [9]
    林江川, 陈自东, 陈小群, 等. 高功率微波作用下光电转换器的抗干扰特性分析[J]. 强激光与粒子束, 2018, 30:013002 doi: 10.11884/HPLPB201830.170158

    Lin Jiangchuan, Chen Zidong, Chen Xiaoqun, et al. Analysis of anti-interference effects for fiber converter under high power microwave radiation[J]. High Power Laser and Particle Beams, 2018, 30: 013002 doi: 10.11884/HPLPB201830.170158
    [10]
    吴平, 姜云升, 徐志谦, 等. CCD成像设备在强电磁脉冲环境下的效应实验研究[J]. 光学学报, 2019, 39:0611002 doi: 10.3788/AOS201939.0611002

    Wu Ping, Jiang Yunsheng, Xu Zhiqian, et al. Experimental research on CCD imaging equipment in intensive electromagnetic-pulse environment[J]. Acta Optica Sinica, 2019, 39: 0611002 doi: 10.3788/AOS201939.0611002
    [11]
    梁圆龙, 黄贤俊, 姚理想, 等. 透明电磁屏蔽材料的研究进展[J]. 安全与电磁兼容, 2021(2):61-68,103

    Liang Yuanlong, Huang Xianjun, Yao Lixiang, et al. Recent research advances on transparent electromagnetic shielding materials[J]. Safety & EMC, 2021(2): 61-68,103
    [12]
    Lu Zhengang, Ma Limin, Tan Jiubin, et al. Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing[J]. 2D Materials, 2017, 4: 025021. doi: 10.1088/2053-1583/aa57f8
    [13]
    Wang Heyan, Ji Chengang, Zhang Cheng, et al. Highly transparent and broadband electromagnetic interference shielding based on ultrathin doped Ag and conducting oxides hybrid film structures[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11782-11791.
    [14]
    Yuan Changwei, Huang Jinhua, Dong Yuxuan, et al. Record-high transparent electromagnetic interference shielding achieved by simultaneous microwave Fabry–Pérot interference and optical antireflection[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26659-26669.
    [15]
    Xie Qindong, Yan Zhiyang, Wang Shengyan, et al. Transparent, flexible, and stable polyethersulfone/copper-nanowires/polyethylene terephthalate sandwich-structured films for high-performance electromagnetic interference shielding[J]. Advanced Engineering Materials, 2021, 23: 2100283. doi: 10.1002/adem.202100283
    [16]
    Liang Yuanlong, Huang Xianjun, Pan Jisheng, et al. Shorted micro-waveguide array for high optical transparency and superior electromagnetic shielding in ultra-wideband frequency spectrum[J]. Advanced Materials Technologies, 2023, 8: 2201532. doi: 10.1002/admt.202201532
    [17]
    陈卓, 杨晓宁, 杨勇. 卫星星敏感器结构强电磁耦合效应仿真及实验研究[J]. 航天器环境工程, 2020, 37(2):131-136

    Chen Zhuo, Yang Xiaoning, Yang Yong. Effects of strong electromagnetic coupling on the structure of satellite star tracker[J]. Spacecraft Environment Engineering, 2020, 37(2): 131-136
    [18]
    吴永康, 翟正一, 毛晓楠, 等. 星敏感器遮光罩的力学分析及优化设计[J]. 环境技术, 2023, 41(5):6-10

    Wu Yongkang, Zhai Zhengyi, Mao Xiaonan, et al. Mechanical analysis and optimization of a star tracker baffle[J]. Environmental Technology, 2023, 41(5): 6-10
    [19]
    余英, 侯明善, 殷春武. 防空导弹红外成像跟踪探测范围研究[J]. 计算机仿真, 2016, 33(4):130-135,423

    Yu Ying, Hou Mingshan, Yin Chunwu. Research on antiaircraft missile's infrared imaging tracking and detection range[J]. Computer Simulation, 2016, 33(4): 130-135,423
    [20]
    余英, 侯明善, 张斯哲, 等. 侧窗探测自适应制导研究[J]. 西北工业大学学报, 2016, 34(2):287-293

    Yu Ying, Hou Mingshan, Zhang Sizhe, et al. A new adaptive proportional navigation based on side window detection[J]. Journal of Northwestern Polytechnical University, 2016, 34(2): 287-293
    [21]
    孟奇, 马丽芳, 张航. 气动加热影响下弹载红外侧窗成像方法研究[J]. 指挥控制与仿真, 2022, 44(6):96-101

    Meng Qi, Ma Lifang, Zhang Hang. Research on infrared lateral window imaging method under the influence of aerodynamic heating[J]. Command Control & Simulation, 2022, 44(6): 96-101
    [22]
    Pozar D M. Microwave engineering[M]. 3rd ed. Hoboken: Wiley, 2005.
    [23]
    Liang Yuanlong, Huang Xianjun, Wen Kui, et al. Metal mesh-based infrared transparent EMI shielding window with balanced shielding properties over a wide frequency spectrum[J]. Applied Sciences, 2023, 13: 4846. doi: 10.3390/app13084846
    [24]
    刘恩博, 王丹丹, 陈珂, 等. 带缝隙腔体电磁谐振特性的仿真分析[J]. 中国科技论文, 2016, 11(16):1808-1812 doi: 10.3969/j.issn.2095-2783.2016.16.003

    Liu Enbo, Wang Dandan, Chen Ke, et al. Simulation analysis on electromagnetic resonance characteristics of cavity with slots[J]. China Sciencepaper, 2016, 11(16): 1808-1812 doi: 10.3969/j.issn.2095-2783.2016.16.003
    [25]
    章炜, 姚建吉, 詹科, 等. 导电胶研究进展[J]. 科技导报, 2018, 36(10):56-65

    Zhang Wei, Yao Jianji, Zhan Ke, et al. Research progress of conductive adhesives[J]. Science & Technology Review, 2018, 36(10): 56-65
    [26]
    Robinson M P, Benson T M, Christopoulos C, et al. Analytical formulation for the shielding effectiveness of enclosures with apertures[J]. IEEE Transactions on Electromagnetic Compatibility, 1998, 40(3): 240-248. doi: 10.1109/15.709422
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (115) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return