Turn off MathJax
Article Contents
Li Jinzhou, Zhang Tengfei, He Donghao, et al. Application of MORPHY program in lead-cooled fast reactor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230357
Citation: Li Jinzhou, Zhang Tengfei, He Donghao, et al. Application of MORPHY program in lead-cooled fast reactor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230357

Application of MORPHY program in lead-cooled fast reactor

doi: 10.11884/HPLPB202436.230357
  • Received Date: 2023-10-17
  • Accepted Date: 2024-01-31
  • Rev Recd Date: 2024-01-31
  • Available Online: 2024-02-21
  • Lead cooled fast reactor has obvious advantages in fuel proliferation and nuclear waste treatment. For the Europe Lead-cooled System (ELSY), based on the “two-step method”, Monte Carlo software is used to generate few group component parameters, and after section correction, it is passed to the determining theory program MORPHY for core calculation. The effects of section modification and angle development order on the calculation accuracy were analyzed, and the effective multiplication factor, normalized flux level and control rod value of the ELSY core were quantified and compared. For different examples, transport correction and neutron multiplication effect correction were adopted, and the core calculation was developed with S4 order. The maximum deviation of effective multiplication factor was 38×10−5, the calculation deviation of control rod value was within 45×10−5, the maximum absolute deviation of normalized neutron flux density was 9.73%, and the average absolute deviation was less than 2%. The feasibility of MORPHY program in the physical analysis of lead-cooled fast reactor is preliminarily verified, which is of reference significance for the subsequent development and use of the program.
  • loading
  • [1]
    Lake J A. The fourth generation of nuclear power[J]. Progress in Nuclear Energy, 2002, 40(3/4): 301-307.
    [2]
    马栩泉. 核能开发与应用[M]. 2版. 北京: 化学工业出版社, 2014

    Ma Xuquan. Development and application of nuclear energy[M]. 2nd ed. Beijing: Chemical Industry Press, 2014
    [3]
    陈仁宗, 周琦, 朱庆福, 等. 小型铅冷快堆堆芯物理计算软件的开发与临界实验验证[J/OL]. 原子能科学技术, 2023: 1-10[2023-10-06]. http://kns.cnki.net/kcms/detail/11.2044.TL.20230905.1106.004.html

    Chen Renzong, Zhou Qi, Zhu Qingfu, et al. Development of reactor physics calculation code and critical experimental validation for small sized lead-cooled fast reactor[J/OL]. Atomic Energy Science and Technology, 2023: 1-10[2023-10-06]. http://kns.cnki.net/kcms/detail/11.2044.TL.20230905.1106.004.html.
    [4]
    吴高晨. 基于RMC的连续能量蒙特卡罗均匀化与群常数产生研究[D]. 北京: 清华大学, 2018

    Wu Gaochen. Research on continuous energy Monte Carlo homogenization and group constant generation based on RMC[D]. Beijing: Tsinghua University, 2018
    [5]
    杨鸣睿, 孙启政, 罗池旭, 等. 基于非结构网格输运模型的核-热耦合程序的开发与验证[J]. 核技术, 2023, 46:030601 doi: 10.11889/j.0253-3219.2023.hjs.46.030601

    Yang Mingrui, Sun Qizheng, Luo Chixu, et al. Development and verification of a neutronics-thermal hydraulics coupling code with unstructured meshes neutron transport model[J]. Nuclear Techniques, 2023, 46: 030601 doi: 10.11889/j.0253-3219.2023.hjs.46.030601
    [6]
    Leppänen J, Pusa M, Viitanen T, et al. The Serpent Monte Carlo code: status, development and applications in 2013[J]. Annals of Nuclear Energy, 2015, 82: 142-150.
    [7]
    Zhang Tengfei, Xiao Wei, Yin Han, et al. VITAS: a multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods[J]. Annals of Nuclear Energy, 2022, 178: 109335. doi: 10.1016/j.anucene.2022.109335
    [8]
    Xu Zhitao, Wu Hongchun, Li Yunzhao, et al. Improved discrete nodal transport method for treating void regions[J]. Annals of Nuclear Energy, 2017, 108: 172-180. doi: 10.1016/j.anucene.2017.04.048
    [9]
    汪天雄. 高功率密度复杂堆芯燃料管理程序系统开发研究[D]. 上海: 上海交通大学, 2021: 20-35

    Wang Tianxiong. Development and research on the fuel management code system for nuclear core with high power density and complex geometry[D]. Shanghai: Shanghai Jiao Tong University, 2021: 20-35
    [10]
    吴宏春, 孙幸光, 曹良志, 等. 二维中子输运方程计算的角度多重网格加速方法及外推加速技术[J]. 核动力工程, 2008, 29(4):5-9,30

    Wu Hongchun, Sun Xingguang, Cao Liangzhi, et al. Angular multigrid acceleration method and Lyusternik-Wagner extrapolation acceleration technique for two-dimensional neutron transport equation[J]. Nuclear Power Engineering, 2008, 29(4): 5-9,30
    [11]
    吴宏春, 杨红义, 曹良志, 等. 金属冷却快堆关键分析软件的现状与展望[J]. 现代应用物理, 2021, 12: 010201

    Wu Hongchun, Yang Hongyi, Cao Liangzhi, et al. Status and prospect of key analysis software for liquid-metal-cooled fast reactor[J]. Modern Applied Physics, 2021, 12(1): 010201
    [12]
    Fridman E, Leppänen J. On the use of the Serpent Monte Carlo code for few-group cross section generation[J]. Annals of Nuclear Energy, 2011, 38(6): 1399-1405. doi: 10.1016/j.anucene.2011.01.032
    [13]
    Alemberti A, Carlsson J, Malambu E, et al. European lead fast reactor-ELSY[J]. Nuclear Engineering and Design, 2011, 241(9): 3470-3480. doi: 10.1016/j.nucengdes.2011.03.029
    [14]
    Ruggieri J M, Tommasi J, Lebrat J F, et al. ERANOS 2.1: international code system for GEN IV fast reactor analysis[C]//Proceedings of ICAPP 2006. 2006: 10-25.
    [15]
    田超, 郑友琦, 李云召, 等. 压水堆各向异性散射的输运修正方法研究[J]. 原子能科学技术, 2017, 51(9):1599-1605 doi: 10.7538/yzk.2017.51.09.1599

    Tian Chao, Zheng Youqi, Li Yunzhao, et al. Transport correction method of PWR anisotropic scattering[J]. Atomic Energy Science and Technology, 2017, 51(9): 1599-1605 doi: 10.7538/yzk.2017.51.09.1599
    [16]
    Yamamoto A, Kitamura Y, Yamane Y. Simplified treatments of anisotropic scattering in LWR core calculations[J]. Journal of Nuclear Science and Technology, 2008, 45(3): 217-229. doi: 10.1080/18811248.2008.9711430
    [17]
    Fridman E, Leppänen J. Revised methods for few-group cross section generation in the serpent Monte Carlo code[C]//Proceedings of the PHYSOR 2012. 2012: 3-8.
    [18]
    蔡利. 考虑中子泄漏修正的快堆蒙特卡罗少群截面参数制作与验证方法[J]. 强激光与粒子束, 2018, 30:026005 doi: 10.11884/HPLPB201830.170254

    Cai Li. Leakage-corrected fast reactor assembly calculation with Monte-Carlo code and its validation methodology[J]. High Power Laser and Particle Beams, 2018, 30: 026005 doi: 10.11884/HPLPB201830.170254
    [19]
    杜夏楠, 吴宏春, 郑友琦. 蒙特卡罗方法在快堆组件参数计算中的应用[J]. 核动力工程, 2014, 35(s2):67-70

    Du Xia’nan, Wu Hongchun, Zheng Youqi. Application of Monte Carlo method in fast reactor assembly homogeneous constant calculation[J]. Nuclear Power Engineering, 2014, 35(s2): 67-70
    [20]
    张滕飞, 殷晗, 孙启政, 等. 通用型中子输运程序VITAS应用研究[J]. 核动力工程, 2023, 44(2):15-23

    Zhang Tengfei, Yin Han, Sun Qizheng, et al. Application research on VITAS—a general-purpose neutron transport code[J]. Nuclear Power Engineering, 2023, 44(2): 15-23
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(10)

    Article views (47) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return