Turn off MathJax
Article Contents
Jia Qiwang, Li Xinyang, Luo Xi, et al. Evaluation of reliability improvement effect on laser adaptive optics systems[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230436
Citation: Jia Qiwang, Li Xinyang, Luo Xi, et al. Evaluation of reliability improvement effect on laser adaptive optics systems[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230436

Evaluation of reliability improvement effect on laser adaptive optics systems

doi: 10.11884/HPLPB202436.230436
  • Received Date: 2023-12-14
  • Accepted Date: 2024-03-13
  • Rev Recd Date: 2024-03-13
  • Available Online: 2024-03-21
  • With the development of adaptive optics (AO) technology in laser field, a variety of improvement measures based on software monitoring and hardware protection have been added to the classical AO system to ensure stable and continuous light output of laser AO system. Facing the reliability challenge brought by the increase of structural complexity, how to build a system failure model to evaluate the reliability of laser AO system has become an important part of the development of laser AO system. In this paper, a dynamic fault tree (DFT) method is proposed to evaluate the reliability of laser AO system, and the dynamic fault tree is established according to the dynamic relationship between the equipment. The bottom event failure rate is estimated by combining the manufacturer information, fatigue life test and historical data. The reliability parameters of DFT are obtained by using binary decision graph and Markov model. Using DFT to analyse the reliable running time of the AO system with the improvement measures, the result shows more than ten times improvement relative to the basic fault tree. In the actual system joint commissioning, no self-induced failure occurred during the expected reliable running time, which is consistent with the DFT estimate. It is proved that the reliability evaluation of laser AO system with improvement measures is more accurate by using DFT method.
  • loading
  • [1]
    姜文汉. 自适应光学发展综述[J]. 光电工程, 2018, 45:170489

    Jiang Wenhan. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45: 170489
    [2]
    杨泽平, 李恩德, 张小军, 等. “神光-Ⅲ”主机装置的自适应光学波前校正系统[J]. 光电工程, 2018, 45:180049

    Yang Zeping, Li Ende, Zhang Xiaojun, et al. Adaptive optics correction systems on Shen Guang Ⅲ facility[J]. Opto-Electronic Engineering, 2018, 45: 180049
    [3]
    芮道满, 刘超, 陈莫, 等. 自适应光学技术在星地激光通信地面站上的应用[J]. 光电工程, 2018, 45:170647

    Rui Daoman, Liu Chao, Chen Mo, et al. Application of adaptive optics on the satellite laser communication ground station[J]. Opto-Electronic Engineering, 2018, 45: 170647
    [4]
    饶长辉, 朱磊, 张兰强, 等. 太阳自适应光学技术进展[J]. 光电工程, 2018, 45:170733

    Rao Changhui, Zhu Lei, Zhang Lanqiang, et al. Development of solar adaptive optics[J]. Opto-Electronic Engineering, 2018, 45: 170733
    [5]
    戴云, 肖飞, 赵军磊, 等. 自适应光学人眼像差调控及其应用[J]. 光电工程, 2018, 45:170703

    Dai Yun, Xiao Fei, Zhao Junlei, et al. Ocular aberrations manipulation with adaptive optics and its application[J]. Opto-Electronic Engineering, 2018, 45: 170703
    [6]
    刘兴富, 朱野, 刘会杰, 等. 某星载长寿命导电滑环传输可靠性评估[J]. 光学 精密工程, 2019, 27(9):2028-2035 doi: 10.3788/OPE.20192709.2028

    Liu Xingfu, Zhu Ye, Liu Huijie, et al. Study on the transmission reliability of long life space electric slip ring[J]. Optics and Precision Engineering, 2019, 27(9): 2028-2035 doi: 10.3788/OPE.20192709.2028
    [7]
    李杨, 韩诚山, 徐抒岩, 等. 定量化故障树分析技术在空间相机软件开发中的应用[J]. 光学 精密工程, 2008, 16(11):2180-2186

    Li Yang, Han Chengshan, Xu Shuyan, et al. Application of quantitative fault tree analysis for space camera software development[J]. Optics and Precision Engineering, 2008, 16(11): 2180-2186
    [8]
    王严, 孙天宇, 罗佺佺, 等. 天问一号高分相机多状态可靠性建模方法[J]. 光学 精密工程, 2022, 30(2):137-142 doi: 10.37188/OPE.20223002.0137

    Wang Yan, Sun Tianyu, Luo Quanquan, et al. Multi-state reliability modeling method for Tianwen-1 high-resolution camera[J]. Optics and Precision Engineering, 2022, 30(2): 137-142 doi: 10.37188/OPE.20223002.0137
    [9]
    高国庆, 周璐春. 基于故障树的自适应光学电控系统可靠性分析[J]. 激光与光电子学进展, 2016, 53:010102

    Gao Guoqing, Zhou Luchun. Fault tree analysis on reliability of electronic control system of adaptive optics[J]. Laser & Optoelectronics Progress, 2016, 53: 010102
    [10]
    毕菁, 凌宁, 胡羿云. 变形镜极间电压保护网络研究[J]. 光电工程, 2006, 33(7):34-38

    Bi Jing, Ling Ning, Hu Yiyun. Protective network research on the actuator voltage of deformable mirror[J]. Opto-Electronic Engineering, 2006, 33(7): 34-38
    [11]
    牛龙飞, 蒋一岚, 苗心向, 等. 大口径反射镜表面颗粒物洁净度控制实验研究[J]. 红外与激光工程, 2021, 50:20210117 doi: 10.3788/IRLA20210117

    Niu Longfei, Jiang Yilan, Miao Xinxiang, et al. Experimental study of particles cleanliness control on the surface of large-aperture reflector[J]. Infrared and Laser Engineering, 2021, 50: 20210117 doi: 10.3788/IRLA20210117
    [12]
    宋定安, 李新阳, 彭真明. 0-1故障模型在自适应光学系统中的应用[J]. 红外与激光工程, 2018, 47:1111004 doi: 10.3788/IRLA201847.1111004

    Song Dingan, Li Xinyang, Peng Zhenming. Application of 0-1 fault model in adaptive optics system[J]. Infrared and Laser Engineering, 2018, 47: 1111004 doi: 10.3788/IRLA201847.1111004
    [13]
    甘永东, 梅月, 沈锋, 等. 一种自适应光学系统稳定闭环控制方法: 112782844A[P]. 2021-05-11

    Gan Yongdong, Mei Yue, Shen Feng, et al. A stable closed-loop control method for adaptive optical systems: 112782844A[P]. 2021-05-11
    [14]
    贾启旺, 李新阳, 罗曦. 自适应光学系统运行失稳检测方法[J]. 红外与激光工程, 2020, 49:20200299

    Jia Qiwang, Li Xinyang, Luo Xi. Detection methods for instability of adaptive optics system[J]. Infrared and Laser Engineering, 2020, 49: 20200299
    [15]
    甘永东, 沈锋, 李新阳, 等. 一种自适应光学系统自动开/闭环决策方法: 110441927B[P]. 2020-10-13

    Gan Yongdong, Shen Feng, Li Xinyang, et al. An automatic open/closed loop decision method for adaptive optical systems: 110441927B[P]. 2020-10-13
    [16]
    Dugan J B, Bavuso S J, Boyd M A. Dynamic fault-tree models for fault-tolerant computer systems[J]. IEEE Transactions on Reliability, 1992, 41(3): 363-377. doi: 10.1109/24.159800
    [17]
    Fahmy R A, Gomaa R I. Dynamic fault tree analysis of auxiliary feedwater system in a pressurized water reactor[J]. Kerntechnik, 2021, 86(2): 164-172. doi: 10.1515/KERN-2020-0067
    [18]
    Baek S, Heo G. Application of dynamic fault tree analysis to prioritize electric power systems in nuclear power plants[J]. Energies, 2021, 14: 4119. doi: 10.3390/en14144119
    [19]
    Chen Yafeng, Wen Jing, Tian Yingjie, et al. Dynamic reliability assessment method for a pantograph system based on a multistate T-S fault tree, dynamic Bayesian[J]. Applied Sciences, 2023, 13: 10711. doi: 10.3390/app131910711
    [20]
    Yan Lu, Zhang Tao, Gao Ying, et al. Reliability analysis of station autonomous computer system based on fuzzy dynamic fault tree and Markov model[J]. Engineering Reports, 2021, 3: e12376. doi: 10.1002/eng2.12376
    [21]
    Zhu Chengyuan, Zhang Tianyuan. A review on the realization methods of dynamic fault tree[J]. Quality and Reliability Engineering International, 2022, 38(6): 3233-3251. doi: 10.1002/qre.3139
    [22]
    刘东, 张红林, 王波, 等. 动态故障树分析方法[M]. 北京: 国防工业出版社, 2013

    Liu Dong, Zhang Honglin, Wang Bo, et al. Methodologies of dynamic fault trees analysis[M]. Beijing: National Defense Industry Press, 2013
    [23]
    李军星, 张勇波, 傅惠民, 等. 离子推力器极少数据可靠性评估方法[J]. 航空动力学报, 2015, 30(10):2352-2356

    Li Junxing, Zhang Yongbo, Fu Huimin, et al. Reliability evaluation method of ion thruster with very few failure data[J]. Journal of Aerospace Power, 2015, 30(10): 2352-2356
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article views (36) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return