Turn off MathJax
Article Contents
Wu Junxiang, Deng Liyuan, He Zhencen, et al. Effect of different physics lists in Monte Carlo simulation on proton boron capture therapy[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240019
Citation: Wu Junxiang, Deng Liyuan, He Zhencen, et al. Effect of different physics lists in Monte Carlo simulation on proton boron capture therapy[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240019

Effect of different physics lists in Monte Carlo simulation on proton boron capture therapy

doi: 10.11884/HPLPB202436.240019
  • Received Date: 2024-01-15
  • Accepted Date: 2024-03-26
  • Rev Recd Date: 2024-03-26
  • Available Online: 2024-03-29
  • This paper compares the effects of different physics lists on the dose of proton boron capture therapy (PBCT) in Monte Carlo Geant4 simulation. Geant4 was used to establish PBCT model with three different physics lists (FTFP, QBBC and QGSP). Comparison is made for dose distribution of three physics lists with and without boron using an 80 MeV proton beam, as well as the nuclear reaction product data of a 3 MeV proton beam bombarding pure boron. There is no significant difference in the dose distribution of the three physics lists in the water phantom with and without boron, and the consistency of different physics models’ percentage depth dose (PDD) curves is good. The PBCT nuclear reaction products obtained from FTFP physics list are significantly less than those obtained from QBBC and QGSP physics lists. The yields, mean energies and energy ranges of the alpha particles obtained from the QGSP physics list are more consistent with the actual situation than that of the QBBC physics list. The QGSP physics list in Geant4 is more suitable for MC simulation studies of PBCT, judging by a comprehensive evaluation of the inelastic scattering models used by the three physics lists and the simulated nuclear reaction data.
  • loading
  • [1]
    Mohan R, Grosshans D. Proton therapy—Present and future[J]. Advanced Drug Delivery Reviews, 2017, 109: 26-44. doi: 10.1016/j.addr.2016.11.006
    [2]
    Yan Susu, Ngoma T A, Ngwa W, et al. Global democratisation of proton radiotherapy[J]. The Lancet Oncology, 2023, 24(6): e245-e254. doi: 10.1016/S1470-2045(23)00184-5
    [3]
    Lomax A J, Bortfeld T, Goitein G, et al. A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy[J]. Radiotherapy and Oncology, 1999, 51(3): 257-271. doi: 10.1016/S0167-8140(99)00036-5
    [4]
    Stuschke M, Kaiser A, Abu-Jawad J, et al. Re-irradiation of recurrent head and neck carcinomas: comparison of robust intensity modulated proton therapy treatment plans with helical tomotherapy[J]. Radiation Oncology, 2013, 8: 93. doi: 10.1186/1748-717X-8-93
    [5]
    Kandula S, Zhu Xiaorong, Garden A S, et al. Spot-scanning beam proton therapy vs intensity-modulated radiation therapy for ipsilateral head and neck malignancies: a treatment planning comparison[J]. Medical Dosimetry, 2013, 38(4): 390-394. doi: 10.1016/j.meddos.2013.05.001
    [6]
    Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10 801 women in 17 randomised trials[J]. The Lancet, 2011, 378(9804): 1707-1716. doi: 10.1016/S0140-6736(11)61629-2
    [7]
    Partridge M, Ramos M, Sardaro A, et al. Dose escalation for non-small cell lung cancer: analysis and modelling of published literature[J]. Radiotherapy and Oncology, 2011, 99(1): 6-11. doi: 10.1016/j.radonc.2011.02.014
    [8]
    Deville C Jr, Jain A, Hwang W T, et al. Initial report of the genitourinary and gastrointestinal toxicity of post-prostatectomy proton therapy for prostate cancer patients undergoing adjuvant or salvage radiotherapy[J]. Acta Oncologica, 2018, 57(11): 1506-1514. doi: 10.1080/0284186X.2018.1487583
    [9]
    Leroy R, Benahmed N, Hulstaert F, et al. Proton therapy in children: a systematic review of clinical effectiveness in 15 pediatric cancers[J]. International Journal of Radiation Oncology Biology Physics, 2016, 95(1): 267-278. doi: 10.1016/j.ijrobp.2015.10.025
    [10]
    Karger C P, Peschke P. RBE and related modeling in carbon-ion therapy[J]. Physics in Medicine & Biology, 2018, 63: 01TR02.
    [11]
    Mein S, Klein C, Kopp B, et al. Assessment of RBE-weighted dose models for carbon ion therapy toward modernization of clinical practice at HIT: in vitro, in vivo, and in patients[J]. International Journal of Radiation Oncology Biology Physics, 2020, 108(3): 779-791.
    [12]
    Rackwitz T, Debus J. Clinical applications of proton and carbon ion therapy[J]. Seminars in Oncology, 2019, 46(3): 226-232. doi: 10.1053/j.seminoncol.2019.07.005
    [13]
    Li Yue, Li Xiaoman, Yang Jiancheng, et al. Flourish of proton and carbon ion radiotherapy in China[J]. Frontiers in Oncology, 2022, 12: 819905. doi: 10.3389/fonc.2022.819905
    [14]
    Paganetti H, Beltran C, Both S, et al. Roadmap: proton therapy physics and biology[J]. Physics in Medicine & Biology, 2021, 66: 05RM01.
    [15]
    Cao Wenhua, Khabazian A, Yepes P P, et al. Linear energy transfer incorporated intensity modulated proton therapy optimization[J]. Physics in Medicine & Biology, 2018, 63: 015013.
    [16]
    Bai Xuemin, Lim G, Wieser H P, et al. Robust optimization to reduce the impact of biological effect variation from physical uncertainties in intensity-modulated proton therapy[J]. Physics in Medicine & Biology, 2019, 64: 025004.
    [17]
    Yoon D K, Jung J, Suh T S. Application of proton boron fusion reaction to radiation therapy: a Monte Carlo simulation study[J]. Applied Physics Letters, 2014, 105: 223507. doi: 10.1063/1.4903345
    [18]
    Jung J Y, Yoon D K, Barraclough B, et al. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a Monte Carlo study[J]. Oncotarget, 2017, 8(24): 39774-39781. doi: 10.18632/oncotarget.15700
    [19]
    Jung J Y, Yoon D K, Lee H C, et al. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT)[J]. AIP Advances, 2016, 6: 095119. doi: 10.1063/1.4963741
    [20]
    Meyer H J, Titt U, Mohan R. Technical note: Monte Carlo study of the mechanism of proton-boron fusion therapy[J]. Medical Physics, 2022, 49(1): 579-582. doi: 10.1002/mp.15381
    [21]
    Martinez-Val J M, Eliezer S, Piera M, et al. Fusion burning waves in proton-boron-11 plasmas[J]. Physics Letters A, 1996, 216(1/5): 142-152.
    [22]
    Labaune C, Baccou C, Depierreux S, et al. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma[J]. Nature Communications, 2013, 4: 2506. doi: 10.1038/ncomms3506
    [23]
    Sikora M H, Weller H R. A new evaluation of the 11B(p, α)αα reaction rates[J]. Journal of Fusion Energy, 2016, 35(3): 538-543. doi: 10.1007/s10894-016-0069-y
    [24]
    Moreau D C. Potentiality of the proton-boron fuel for controlled thermonuclear fusion[J]. Nuclear Fusion, 1977, 17(1): 13-20. doi: 10.1088/0029-5515/17/1/002
    [25]
    Wang L, Chui C S, Lovelock M. A patient-specific Monte Carlo dose-calculation method for photon beams[J]. Medical Physics, 1998, 25(6): 867-878. doi: 10.1118/1.598262
    [26]
    Ottosson W, Sibolt P, Larsen C, et al. Monte Carlo calculations support organ sparing in Deep-Inspiration Breath-Hold intensity-modulated radiotherapy for locally advanced lung cancer[J]. Radiotherapy and Oncology, 2015, 117(1): 55-63. doi: 10.1016/j.radonc.2015.08.032
    [27]
    Jarlskog C Z, Paganetti H. Physics settings for using the Geant4 toolkit in proton therapy[J]. IEEE Transactions on Nuclear Science, 2008, 55(3): 1018-1025. doi: 10.1109/TNS.2008.922816
    [28]
    Folger G, Ivanchenko V N, Wellisch J P. The binary cascade: nucleon nuclear reactions[J]. The European Physical Journal A - Hadrons and Nuclei, 2004, 21(3): 407-417.
    [29]
    Serber R. Nuclear reactions at high energies[J]. Physical Review, 1947, 72(11): 1114-1115. doi: 10.1103/PhysRev.72.1114
    [30]
    Tran N H, Shtam T, Marchenko Y Y, et al. Current state and prospectives for proton boron capture therapy[J]. Biomedicines, 2023, 11: 1727. doi: 10.3390/biomedicines11061727
    [31]
    Tabbakh F, Hosmane N S. Enhancement of radiation effectiveness in proton therapy: comparison between fusion and fission methods and further approaches[J]. Scientific Reports, 2020, 10: 5466. doi: 10.1038/s41598-020-62268-5
    [32]
    Liu Dong, Lee S L, Woo J K. Evaluation of proton-boron fusion-enhanced proton therapy (PBFEPT) by using a simulation method[J]. New Physics:Sae Mulli, 2019, 69(2): 215-220. doi: 10.3938/NPSM.69.215
    [33]
    Enger S A, Giusti V, Arce P. SU-E-T-492: high precision cross sections and physics models for proton interactions below 20 MeV in Geant4[J]. Medical Physics, 2013, 40(6): 319.
    [34]
    Lu Yu, Xu Zhao, Zhang Lianxin, et al. GEANT4 simulations of the neutron beam characteristics for 9Be/7Li targets bombarded by the low energy protons[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2021, 506: 8-14.
    [35]
    Mazzone A, Finocchiaro P, Lo Meo S, et al. On the (un)effectiveness of proton boron capture in proton therapy[J]. The European Physical Journal Plus, 2019, 134: 361. doi: 10.1140/epjp/i2019-12725-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (56) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return