| Citation: | Liu Qiao, Lv You, Lu Ruiqi, et al. Simulation analysis of electron beam performance and beam-wave interaction in megawatt-class gyrotron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250129 |
| [1] |
李志良, 冯进军, 刘本田, 等. 国际热核聚变装置用回旋管的现状及技术分析[J]. 真空电子技术, 2012(2): 47-54
Li Zhiliang, Feng Jinjun, Liu Bentian, et al. Current status and technical analysis of gyrotron for fusion applications[J]. Vacuum Electronics, 2012(2): 47-54
|
| [2] |
安晨翔, 周宁, 陈坤, 等. 相对论强流电子束驱动的X波段同轴回旋管腔体设计[J]. 强激光与粒子束, 2025, 37: 073001 doi: 10.11884/HPLPB202537.250042
An Chenxiang, Zhou Ning, Chen Kun, et al. Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam[J]. High Power Laser and Particle Beams, 2025, 37: 073001 doi: 10.11884/HPLPB202537.250042
|
| [3] |
胡林林, 孙迪敏, 黄麒力, 等. 105/140 GHz双频兆瓦回旋管实现1.0 MW脉冲输出[J]. 强激光与粒子束, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388
Hu Linlin, Sun Dimin, Huang Qili, et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron[J]. High Power Laser and Particle Beams, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388
|
| [4] |
Kariya T, Minami R, Imai T, et al. Development of high power gyrotrons for advanced fusion devices[J]. Nuclear Fusion, 2019, 59: 066009. doi: 10.1088/1741-4326/ab0e2c
|
| [5] |
Thumm M K A, Denisov G G, Sakamoto K, et al. High-power gyrotrons for electron cyclotron heating and current drive[J]. Nuclear Fusion, 2019, 59: 073001. doi: 10.1088/1741-4326/ab2005
|
| [6] |
Kariya T, Imai T, Minami R, et al. Development of over-MW gyrotrons for fusion at 14 GHz to sub-THz frequencies[J]. Nuclear Fusion, 2017, 57: 066001. doi: 10.1088/1741-4326/aa6875
|
| [7] |
Idei H, Kariya T, Imai T, et al. Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak[J]. Nuclear Fusion, 2017, 57: 126045. doi: 10.1088/1741-4326/aa7c20
|
| [8] |
Nakashima Y, Ichimura K, Islam M S, et al. Recent progress of divertor simulation research using the GAMMA 10/PDX tandem mirror[J]. Nuclear Fusion, 2017, 57: 116033. doi: 10.1088/1741-4326/aa7cb4
|
| [9] |
Xu Handong, Wang Xiaojie, Zhang Jian, et al. Recent progress of the development of a long pulse 140GHz ECRH system on EAST[J]. EPJ Web of Conferences, 2019, 203: 04002. doi: 10.1051/epjconf/201920304002
|
| [10] |
Erckmann V, Brand P, Braune H, et al. Electron cyclotron heating for W7-X: physics and technology[J]. Fusion Science and Technology, 2007, 52(2): 291-312. doi: 10.13182/FST07-A1508
|
| [11] |
Felch K, Blank M, Borchard P, et al. Recent ITER-relevant gyrotron tests[J]. Journal of Physics: Conference Series, 2005, 25(1): 13-23.
|
| [12] |
Dammertz G, Alberti S, Arnold A, et al. Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 808-818. doi: 10.1109/TPS.2002.801509
|
| [13] |
Gantenbein G, Erckmann V, Illy S, et al. 140 GHz, 1 MW CW gyrotron development for fusion applications—Progress and recent results[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 320-328. doi: 10.1007/s10762-010-9749-2
|
| [14] |
Dammertz G, Alberti S, Bariou D, et al. 140 GHz high-power gyrotron development for the stellarator W7-X[J]. Fusion Engineering and Design, 2005, 74(1/4): 217-221.
|
| [15] |
Felch K, Blank M, Borchard P, et al. Long-pulse and CW tests of a 110-GHz gyrotron with an internal, quasi-optical converter[J]. IEEE Transactions on Plasma Science, 1996, 24(3): 558-569. doi: 10.1109/27.532938
|
| [16] |
Felch K, Blank M, Borchard P, et al. Operating experience on six 110 GHz, 1 MW gyrotrons for ECH applications[J]. Nuclear Fusion, 2008, 48: 054008. doi: 10.1088/0029-5515/48/5/054008
|
| [17] |
Lohr J, Cengher M, Doane J L, et al. The multiple gyrotron system on the DIII-D tokamak[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 253-273. doi: 10.1007/s10762-010-9706-0
|
| [18] |
Bigot B. Progress toward ITER’s first plasma[J]. Nuclear Fusion, 2019, 59: 112001. doi: 10.1088/1741-4326/ab0f84
|
| [19] |
Oda Y, Ikeda R, Kajiwara K, et al. Development of the first ITER gyrotron in QST[J]. Nuclear Fusion, 2019, 59: 086014. doi: 10.1088/1741-4326/ab22c2
|
| [20] |
Krasilnikov A V, Abdyuhanov I M, Aleksandrov E V, et al. Progress with the ITER project activity in Russia[J]. Nuclear Fusion, 2015, 55: 104007. doi: 10.1088/0029-5515/55/10/104007
|
| [21] |
Ioannidis Z C, Rzesnicki T, Albajar F, et al. CW experiments with the EU 1-MW, 170-GHz industrial prototype gyrotron for ITER at KIT[J]. IEEE Transactions on Electron Devices, 2017, 64(9): 3885-3892. doi: 10.1109/TED.2017.2730242
|
| [22] |
Botton M, Antonsen T M, Levush B, et al. MAGY: a time-dependent code for simulation of slow and fast microwave sources[J]. IEEE Transactions on Plasma Science, 1998, 26(3): 882-892. doi: 10.1109/27.700860
|
| [23] |
刘巧. 高功率回旋管多模自洽非线性问题研究[D]. 成都: 电子科技大学, 2020: 36-45
Liu Qiao. Multi-mode self-consistent non-linear research on high-power gyrotron[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 36-45
|
| [24] |
Liu Yinghui, Liu Qiao, Niu Xinjian, et al. Design and experiment on a 95-GHz 400 kW-level gyrotron[J]. IEEE Transactions on Electron Devices, 2021, 68(1): 434-437. doi: 10.1109/TED.2020.3036324
|