Turn off MathJax
Article Contents
Liu Qiao, Lv You, Lu Ruiqi, et al. Simulation analysis of electron beam performance and beam-wave interaction in megawatt-class gyrotron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250129
Citation: Liu Qiao, Lv You, Lu Ruiqi, et al. Simulation analysis of electron beam performance and beam-wave interaction in megawatt-class gyrotron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250129

Simulation analysis of electron beam performance and beam-wave interaction in megawatt-class gyrotron

doi: 10.11884/HPLPB202638.250129
  • Received Date: 2025-04-26
  • Accepted Date: 2025-07-29
  • Rev Recd Date: 2025-10-06
  • Available Online: 2025-12-15
  • Background
    The gyrotron is a relativistic nonlinear device capable of generating high-power electromagnetic radiation in the millimeter-wave and terahertz frequency ranges. In most operating magnetically confined thermonuclear fusion reactors (ECH&CD), high-power gyrotrons serve as the core microwave source devices for their electron cyclotron wave heating and current drive systems. For high-power gyrotrons, the high-frequency cavity must operate in a high-order whispering gallery mode to meet the power capacity requirements. However, high order mode operation conversely introduces severe mode competition. Electron beam performance is a major factor affecting the mode competition, further limiting their efficient and stable operation, particularly in long-pulse or continuous-wave regimes. Therefore, it is essential to investigate the impact of megawatt-level gyrotron electron beam performance on beam-wave interaction.
    Method
    This paper comprehensively considers electron beam performance (velocity spread, beam thickness, space charge effects, oscillation startup process, single/double-anode configuration) and establishes a sophisticated time-domain, multi-mode, multi-frequency self-consistent nonlinear beam-wave interaction model.
    Purpose
    The study focuses on a self-developed megawatt-level 170 GHz gyrotron operating at TE25,10 mode, analyzing the structural parameter variations of the high-frequency cavity, the start-oscillation current, and the mode competition in single/dual-anode electron beam modulation.
    Results
    Under operating conditions of 80 kV beam voltage, 40 A beam current, 6.72 T magnetic field, and a velocity ratio of 1.3, the output power reaches 1.35 MW with an interaction efficiency of 42.2%.
    Conclusion
    Numerical simulations demonstrate that the dual-anode modulation method significantly suppresses mode competition. The successful demonstration of this device establishes a foundation for further studies on higher power and higher-frequency gyrotron.
  • loading
  • [1]
    李志良, 冯进军, 刘本田, 等. 国际热核聚变装置用回旋管的现状及技术分析[J]. 真空电子技术, 2012(2): 47-54

    Li Zhiliang, Feng Jinjun, Liu Bentian, et al. Current status and technical analysis of gyrotron for fusion applications[J]. Vacuum Electronics, 2012(2): 47-54
    [2]
    安晨翔, 周宁, 陈坤, 等. 相对论强流电子束驱动的X波段同轴回旋管腔体设计[J]. 强激光与粒子束, 2025, 37: 073001 doi: 10.11884/HPLPB202537.250042

    An Chenxiang, Zhou Ning, Chen Kun, et al. Design of X-band coaxial gyrotron cavity driven by intense relativistic electron beam[J]. High Power Laser and Particle Beams, 2025, 37: 073001 doi: 10.11884/HPLPB202537.250042
    [3]
    胡林林, 孙迪敏, 黄麒力, 等. 105/140 GHz双频兆瓦回旋管实现1.0 MW脉冲输出[J]. 强激光与粒子束, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388

    Hu Linlin, Sun Dimin, Huang Qili, et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron[J]. High Power Laser and Particle Beams, 2023, 35: 023001 doi: 10.11884/HPLPB202335.220388
    [4]
    Kariya T, Minami R, Imai T, et al. Development of high power gyrotrons for advanced fusion devices[J]. Nuclear Fusion, 2019, 59: 066009. doi: 10.1088/1741-4326/ab0e2c
    [5]
    Thumm M K A, Denisov G G, Sakamoto K, et al. High-power gyrotrons for electron cyclotron heating and current drive[J]. Nuclear Fusion, 2019, 59: 073001. doi: 10.1088/1741-4326/ab2005
    [6]
    Kariya T, Imai T, Minami R, et al. Development of over-MW gyrotrons for fusion at 14 GHz to sub-THz frequencies[J]. Nuclear Fusion, 2017, 57: 066001. doi: 10.1088/1741-4326/aa6875
    [7]
    Idei H, Kariya T, Imai T, et al. Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak[J]. Nuclear Fusion, 2017, 57: 126045. doi: 10.1088/1741-4326/aa7c20
    [8]
    Nakashima Y, Ichimura K, Islam M S, et al. Recent progress of divertor simulation research using the GAMMA 10/PDX tandem mirror[J]. Nuclear Fusion, 2017, 57: 116033. doi: 10.1088/1741-4326/aa7cb4
    [9]
    Xu Handong, Wang Xiaojie, Zhang Jian, et al. Recent progress of the development of a long pulse 140GHz ECRH system on EAST[J]. EPJ Web of Conferences, 2019, 203: 04002. doi: 10.1051/epjconf/201920304002
    [10]
    Erckmann V, Brand P, Braune H, et al. Electron cyclotron heating for W7-X: physics and technology[J]. Fusion Science and Technology, 2007, 52(2): 291-312. doi: 10.13182/FST07-A1508
    [11]
    Felch K, Blank M, Borchard P, et al. Recent ITER-relevant gyrotron tests[J]. Journal of Physics: Conference Series, 2005, 25(1): 13-23.
    [12]
    Dammertz G, Alberti S, Arnold A, et al. Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 808-818. doi: 10.1109/TPS.2002.801509
    [13]
    Gantenbein G, Erckmann V, Illy S, et al. 140 GHz, 1 MW CW gyrotron development for fusion applications—Progress and recent results[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 320-328. doi: 10.1007/s10762-010-9749-2
    [14]
    Dammertz G, Alberti S, Bariou D, et al. 140 GHz high-power gyrotron development for the stellarator W7-X[J]. Fusion Engineering and Design, 2005, 74(1/4): 217-221.
    [15]
    Felch K, Blank M, Borchard P, et al. Long-pulse and CW tests of a 110-GHz gyrotron with an internal, quasi-optical converter[J]. IEEE Transactions on Plasma Science, 1996, 24(3): 558-569. doi: 10.1109/27.532938
    [16]
    Felch K, Blank M, Borchard P, et al. Operating experience on six 110 GHz, 1 MW gyrotrons for ECH applications[J]. Nuclear Fusion, 2008, 48: 054008. doi: 10.1088/0029-5515/48/5/054008
    [17]
    Lohr J, Cengher M, Doane J L, et al. The multiple gyrotron system on the DIII-D tokamak[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 253-273. doi: 10.1007/s10762-010-9706-0
    [18]
    Bigot B. Progress toward ITER’s first plasma[J]. Nuclear Fusion, 2019, 59: 112001. doi: 10.1088/1741-4326/ab0f84
    [19]
    Oda Y, Ikeda R, Kajiwara K, et al. Development of the first ITER gyrotron in QST[J]. Nuclear Fusion, 2019, 59: 086014. doi: 10.1088/1741-4326/ab22c2
    [20]
    Krasilnikov A V, Abdyuhanov I M, Aleksandrov E V, et al. Progress with the ITER project activity in Russia[J]. Nuclear Fusion, 2015, 55: 104007. doi: 10.1088/0029-5515/55/10/104007
    [21]
    Ioannidis Z C, Rzesnicki T, Albajar F, et al. CW experiments with the EU 1-MW, 170-GHz industrial prototype gyrotron for ITER at KIT[J]. IEEE Transactions on Electron Devices, 2017, 64(9): 3885-3892. doi: 10.1109/TED.2017.2730242
    [22]
    Botton M, Antonsen T M, Levush B, et al. MAGY: a time-dependent code for simulation of slow and fast microwave sources[J]. IEEE Transactions on Plasma Science, 1998, 26(3): 882-892. doi: 10.1109/27.700860
    [23]
    刘巧. 高功率回旋管多模自洽非线性问题研究[D]. 成都: 电子科技大学, 2020: 36-45

    Liu Qiao. Multi-mode self-consistent non-linear research on high-power gyrotron[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 36-45
    [24]
    Liu Yinghui, Liu Qiao, Niu Xinjian, et al. Design and experiment on a 95-GHz 400 kW-level gyrotron[J]. IEEE Transactions on Electron Devices, 2021, 68(1): 434-437. doi: 10.1109/TED.2020.3036324
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article views (25) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return