Turn off MathJax
Article Contents
Lu Lu, An Shizhong, Guan Fengping, et al. Simulation study of neutron source for bimodal imaging target system based on low energy hgh current cyclotron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250168
Citation: Lu Lu, An Shizhong, Guan Fengping, et al. Simulation study of neutron source for bimodal imaging target system based on low energy hgh current cyclotron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250168

Simulation study of neutron source for bimodal imaging target system based on low energy hgh current cyclotron

doi: 10.11884/HPLPB202638.250168
  • Received Date: 2025-10-22
  • Accepted Date: 2026-01-09
  • Rev Recd Date: 2026-01-20
  • Available Online: 2026-02-05
  • Background
    Gamma and thermal neutron imaging are important non-destructive testing methods, which are complementary in many aspects. The thermal neutron and Gamma bimodal imaging can combine the advantages of both. Compares with single beam imaging, the bimodal imaging has the ability to identify different substances and the sensitivity to both nuclides and elements simultaneous.
    Purpose
    Utilizing the reaction between protons and target material producing neutrons and Gamma together, based on the 18 MeV cyclotron accelerator being developed by the Institute of Atomic Energy, this paper designs a bimodal imaging neutron source by simulation.
    Methods
    Beryllium with a high (p, n) reaction cross-section is selected as the neutron target to generate neutrons. To obtain thermal neutrons with higher flux, polyethylene is used as the neutron moderator and reflector. By the different spatial distributions of thermal neutrons and Gamma, these two types of radiation are separately extracted from different directions. Besides, by designing the neutron and Gamma exits on polyethylene, high neutron flux and Gamma beams are simultaneously obtained.
    Results
    After simulation optimization, the thermal neutron flux at the thermal neutron outlet can reach 1.78×1010 n/(cm2·s) , and the gamma dose at the gamma outlet can reach 2.23×104 rad/h.
    Conclusions
    This paper design a neutron source for thermal-neutron-gamma imaging based on the 18 MeV/1 mA cyclotron accelerator. The design efficiently extracts thermal neutron flux and gamma flux from a single target, implementing a single-target-dual-source configuration.
  • loading
  • [1]
    Anderson I S, McGreevy R L, Bilheux H Z. Neutron imaging and applications[M]. New York: Springer, 2009: 987.
    [2]
    Horn Q C, Yang S H. Morphology and spatial distribution of ZnO formed in discharged alkaline Zn/MnO2 AA cells[J]. Journal of the Electrochemical Society, 2003, 150: A652. doi: 10.1149/1.1566014
    [3]
    Tötzke C, Kardjilov N, Lenoir N, et al. What comes NeXT?—High-speed neutron tomography at ILL[J]. Optics Express, 2019, 27(20): 28640-28648. doi: 10.1364/OE.27.028640
    [4]
    De Beer F C. Neutron and X-ray tomography at Necsa[J]. The Journal of the Southern African Institute of Mining and Metallurgy, 2008, 108: 613-620.
    [5]
    Clark T, Burca G, Boardman R, et al. Correlative X-ray and neutron tomography of root systems using cadmium fiducial markers[J]. Journal of Microscopy, 2020, 277(3): 170-178. doi: 10.1111/jmi.12831
    [6]
    Lehmann E H, Vontobel P, Deschler-Erb E, et al. Non-invasive studies of objects from cultural heritage[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1/3): 68-75.
    [7]
    Banhart J, Borbély A, Dzieciol K, et al. X-ray and neutron imaging–Complementary techniques for materials science and engineering[J]. International Journal of Materials Research, 2010, 101: 1069-1079.
    [8]
    Carminati A, Kaestner A, Lehmann P, et al. Monitoring water flow in soils, using neutron and gamma tomography[J]. PSI Sci Rep, 2005, 2006: 28-29.
    [9]
    Kaestner A P, Hovind J, Boillat P, et al. Bimodal imaging at ICON using neutrons and X-rays[J]. Physics Procedia, 2017, 88: 314-321. doi: 10.1016/j.phpro.2017.06.043
    [10]
    Fedrigo A, Marstal K, Bender Koch C, et al. Investigation of a Monturaqui Impactite by means of bi-modal X-ray and neutron tomography[J]. Journal of Imaging, 2018, 4: 72. doi: 10.3390/jimaging4050072
    [11]
    Lehmann E H, Mannes D, Kaestner A P, et al. The XTRA option at the NEUTRA facility—more than 10 years of Bi-modal neutron and X-ray imaging at PSI[J]. Applied Sciences, 2021, 11: 3825. doi: 10.3390/app11093825
    [12]
    Sinha V, Srivastava A, Lee H K, et al. Performance evaluation of a combined neutron and x-ray digital imaging system[C]//Proceedings of SPIE 8694, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2013. 2013: 86940R.
    [13]
    Mannes D, Schmid F, Frey J, et al. Combined neutron and X-ray imaging for non-invasive investigations of cultural heritage objects[J]. Physics Procedia, 2015, 69: 653-660. doi: 10.1016/j.phpro.2015.07.092
    [14]
    LaManna J M, Hussey D S, Baltic E, et al. Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography[J]. Review of Scientific Instruments, 2017, 88: 113702. doi: 10.1063/1.4989642
    [15]
    Tengattini A, Lenoir N, Andò E, et al. NeXT-Grenoble, the neutron and X-ray tomograph in Grenoble[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 968: 163939. doi: 10.1016/j.nima.2020.163939
    [16]
    丁大钊, 叶春堂, 赵志祥. 中子物理学: 原理、方法与应用[M]. 北京: 原子能出版社, 2001

    Ding Dazhao, Ye Chuntang, Zhao Zhixiang. Neutron physics[M]. Beijing: Atomic Energy Press, 2001
    [17]
    Anderson I S, Andreani C, Carpenter J M, et al. Research opportunities with compact accelerator-driven neutron sources[J]. Physics Reports, 2016, 654: 1-58. doi: 10.1016/j.physrep.2016.07.007
    [18]
    Baxter D V, Cameron J M, Derenchuk V P, et al. Status of the low energy neutron source at Indiana university[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 241(1/4): 209-212.
    [19]
    Tasaki S, Nagae T, Hirose M, et al. Properties and possible applications of Kyoto University accelerator based neutron source (KUANS)[J]. Physics Procedia, 2014, 60: 181-185. doi: 10.1016/j.phpro.2014.11.026
    [20]
    Otake Y. RIKEN accelerator-driven compact neutron systems[C]//8th International Meeting of Union for Compact Accelerator-Driven Neutron Sources. 2020: 01009.
    [21]
    Xiao Yongshun, Chen Zhiqiang, Yang Yigang, et al. Development progress of the neutron imaging station in CPHS[J]. Physics Procedia, 2015, 69: 96-103. doi: 10.1016/j.phpro.2015.07.014
    [22]
    陈伯显, 张智. 核辐射物理及探测学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2011

    Chen Boxian, Zhang Zhi. Nuclear physics and detection[M]. Harbin: Harbin Engineering University Press, 2011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (11) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return