Turn off MathJax
Article Contents
Qi Yanbing, Sun Hen, Li Wenzhuo, et al. Effects of laser pulse duration on the intensity of laser-induced breakdown spectroscopy and ablation morphology[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250177
Citation: Qi Yanbing, Sun Hen, Li Wenzhuo, et al. Effects of laser pulse duration on the intensity of laser-induced breakdown spectroscopy and ablation morphology[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250177

Effects of laser pulse duration on the intensity of laser-induced breakdown spectroscopy and ablation morphology

doi: 10.11884/HPLPB202638.250177
  • Received Date: 2025-06-19
  • Accepted Date: 2025-11-25
  • Rev Recd Date: 2025-12-20
  • Available Online: 2026-01-05
  • Background
    The dual-pulse LIBS (DP-LIBS) technology can effectively enhance the spectral intensity of LIBS and has received widespread attention in LIBS analysis.
    Purpose
    For the purpose to understand the enhancement mechanism of traditional collinear dual pulse LIBS and long-short collinear dual pulse LIBS spectra, a comparative study was conducted on two DP-LIBS with different laser excitation schemes, i.e. the conventional collinear dual nanosecond pulse excitation scheme, and the long-short collinear dual-pulse excitation scheme which combining a microsecond pulse and a nanosecond pulse.
    Method
    The enhancement mechanism and variation trend of spectral intensity were investigated by systematically analyzing the laser ablation morphology and LIBS spectra collected under different inter-pulse delay, spectral acquisition delay and laser pulse energy in both DP-LIBS modes.
    Results
    The results show that, in conventional collinear DP-LIBS, the spectral intensity increases rapidly within a short delay time of 0–2 μs, but remains relatively high in the longer delay range of 2–14 μs. And the optimal inter-pulse delay is around 4 μs in conventional collinear DP-LIBS. In contrast, the optimal inter-pulse delay for the long-short collinear DP-LIBS is approximately 25 μs, which is determined by the peak power timing of the long-pulse laser.
    Conclusions
    In the conventional DP-LIBS configuration, spectral enhancement is more sensitive to the energy variations of the second pulse than that of the first pulse. In the long-short pulse scheme, increasing the energy of the long-pulse laser facilitates sample heating and surface modification, thereby enhancing spectral intensity. However, excessive long-pulse laser energy might cause sample melting and material ejection, which in turn diminishes the ablation efficiency of the subsequent short-pulse laser and reduces the overall spectral intensity. Further analysis of the ablation morphology reveals that the conventional collinear DP-LIBS tends to produce deeper ablation craters, whereas the long-short collinear DP-LIBS is more likely to generate larger ablation craters.
  • loading
  • [1]
    Hahn D W, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields[J]. Applied Spectroscopy, 2012, 66(4): 347-419. doi: 10.1366/11-06574
    [2]
    Laserna J, Vadillo J M, Purohit P. Laser-induced breakdown spectroscopy (LIBS): fast, effective, and agile leading edge analytical technology[J]. Applied Spectroscopy, 2018, 72(s1): 35-50. doi: 10.1177/0003702818791926
    [3]
    Koch S, Court R, Garen W, et al. Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(7/8): 1230-1235. doi: 10.1016/j.sab.2005.06.015
    [4]
    王建伟, 张娜珍, 侯可勇, 等. LIBS技术在土壤重金属污染快速测量中的应用[J]. 化学进展, 2008, 20(7/8): 1165-1171

    Wang Jianwei, Zhang Nazhen, Hou Keyong, et al. Application of LIBS technology to the rapid measure of heavy metal contamination in soils[J]. Progress in Chemistry, 2008, 20(7/8): 1165-1171
    [5]
    Moncayo S, Rosales J D, Izquierdo-Hornillos R, et al. Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS)[J]. Talanta, 2016, 158: 185-191. doi: 10.1016/j.talanta.2016.05.059
    [6]
    Kongbonga Y G M, Ghalila H, Onana M B, et al. Classification of vegetable oils based on their concentration of saturated fatty acids using laser induced breakdown spectroscopy (LIBS)[J]. Food Chemistry, 2014, 147: 327-331. doi: 10.1016/j.foodchem.2013.09.145
    [7]
    Dong Meirong, Wei Liping, Lu Jidong, et al. A comparative model combining carbon atomic and molecular emissions based on partial least squares and support vector regression correction for carbon analysis in coal using LIBS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(3): 480-488. doi: 10.1039/C8JA00414E
    [8]
    Yip W L, Cheung N H. Analysis of aluminum alloys by resonance-enhanced laser-induced breakdown spectroscopy: how the beam profile of the ablation laser and the energy of the dye laser affect analytical performance[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(4): 315-322. doi: 10.1016/j.sab.2009.03.020
    [9]
    Vinić M, Ivković M. Spatial and temporal characteristics of laser ablation combined with fast pulse discharge[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2598-2599. doi: 10.1109/TPS.2014.2330372
    [10]
    李霞芬, 周卫东, 钱惠国, 等. 激光烧蚀脉冲放电激发的土壤等离子体电子数密度和温度的研究[J]. 光学学报, 2011, 31: 1130001 doi: 10.3788/AOS201131.1130001

    Li Xiafen, Zhou Weidong, Qian Huiguo, et al. Electron temperature and density of soil plasma generated by laser ablation fast pulse discharge spectroscopy[J]. Acta Optica Sinica, 2011, 31: 1130001 doi: 10.3788/AOS201131.1130001
    [11]
    Viljanen J, Sun Zhiwei, Alwahabi Z T. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 118: 29-36. doi: 10.1016/j.sab.2016.02.002
    [12]
    王金梅, 杨志, 郑培超, 等. 空间约束LIBS结合树脂富集对土壤Cu元素的分析[J]. 中国激光, 2025, 52: 0611001 doi: 10.3788/CJL241179

    Wang Jinmei, Yang Zhi, Zheng Peichao, et al. Analysis of Cu elements in soil by spatially constrained LIBS combined with resin enrichment[J]. Chinese Journal of Lasers, 2025, 52: 0611001 doi: 10.3788/CJL241179
    [13]
    Popov A M, Colao F, Fantoni R. Enhancement of LIBS signal by spatially confining the laser-induced plasma[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(5): 602-604. doi: 10.1039/b818849a
    [14]
    王金梅, 郑慧娟, 郑培超, 等. 正交再加热双脉冲激光诱导黄连等离子体的光谱特性[J]. 中国激光, 2018, 45: 0702006 doi: 10.3788/CJL201845.0702006

    Wang Jinmei, Zheng Huijuan, Zheng Peichao, et al. Spectral characteristics of coptis chinensis plasma induced by orthogonal re-heating double-pulse laser[J]. Chinese Journal of Lasers, 2018, 45: 0702006 doi: 10.3788/CJL201845.0702006
    [15]
    杨瑞兆, 苏雪娇, 於有利, 等. 共线双脉冲激光诱导击穿光谱技术检测铝合金中的Cr和Mn[J]. 强激光与粒子束, 2018, 30: 099001 doi: 10.11884/HPLPB201830.180053

    Yang Ruizhao, Su Xuejiao, Yu Youli, et al. Double pulse laser-induced breakdown spectroscopy analysis of trace elements Cr and Mn in aluminum alloy[J]. High Power Laser and Particle Beams, 2018, 30: 099001 doi: 10.11884/HPLPB201830.180053
    [16]
    杜闯, 高勋, 邵妍, 等. 土壤中重金属元素的双脉冲激光诱导击穿光谱研究[J]. 物理学报, 2013, 62: 045202 doi: 10.3969/j.issn.1007-9432.2014.05.023

    Du Chuang, Gao Xun, Shao Yan, et al. Analyses of heavy metals by soil using dual-pulsed laser induced breakdown spectroscopy[J]. Acta Physica Sinica, 2013, 62: 045202 doi: 10.3969/j.issn.1007-9432.2014.05.023
    [17]
    高勋, 邵妍, 杜闯, 等. 预烧蚀激光参数对双脉冲激光诱导击穿光谱增强的影响[J]. 中国激光, 2013, 40: 0815003 doi: 10.3788/CJL201340.0815003

    Gao Xun, Shao Yan, Du Chuang, et al. Pre-ablation laser parameters effect on the spectral enhancement of double pulsed laser induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2013, 40: 0815003 doi: 10.3788/CJL201340.0815003
    [18]
    Bhatt C R, Hartzler D, Jain J C, et al. Evaluation of analytical performance of double pulse laser-induced breakdown spectroscopy for the detection of rare earth elements[J]. Optics & Laser Technology, 2020, 126: 106110. doi: 10.1016/j.optlastec.2020.106110
    [19]
    Cui Minchao, Guo Haorong, Chi Yada, et al. Quantitative analysis of trace carbon in steel samples using collinear long-short double-pulse laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 191: 106398. doi: 10.1016/j.sab.2022.106398
    [20]
    Wang Zhenzhen, Deguchi Y, Liu Renwei, et al. Emission characteristics of laser-induced plasma using collinear long and short dual-pulse laser-induced breakdown spectroscopy (LIBS)[J]. Applied Spectroscopy, 2017, 71(9): 2187-2198. doi: 10.1177/0003702817693239
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (46) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return