Turn off MathJax
Article Contents
Ma Zhaokun, Sun Yunfei, Zhang Qiang, et al. An all-metal beam scanning lens antenna for high-power microwave applications[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250237
Citation: Ma Zhaokun, Sun Yunfei, Zhang Qiang, et al. An all-metal beam scanning lens antenna for high-power microwave applications[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250237

An all-metal beam scanning lens antenna for high-power microwave applications

doi: 10.11884/HPLPB202638.250237
  • Received Date: 2025-12-03
  • Accepted Date: 2026-01-15
  • Rev Recd Date: 2025-01-20
  • Available Online: 2026-02-06
  • Background
    With the advancement of high-power microwave (HPM) technology, there is a growing demand for HPM antennas with beam scanning capabilities.
    Purpose
    This paper focuses on the beam-scanning technology in HPM field and proposes a novel circularly-polarized all-metal beam-scanning lens antenna based on the Risley-prism principle, aiming to address the challenges of wide-angle beam scanning and high power handling capacity (PHC).
    Methods
    By introducing circular slots and metamaterial structures into hexagonal units, a circular polarization orthogonal conversion efficiency(the conversion efficiency of incident left-hand/right-hand circularly polarized (LHCP/RHCP) waves to their orthogonal RHCP/LHCP waves) of over 99% at the central frequency and a continuous phase tuning range of 0° to 360° are achieved. After arraying, the two-layer lens, together with the radial line slot array (RLSA) antenna, constitutes the beam scanning antenna system. Specifically, the first lens converts the circularly polarized hollow beam radiated by the feed antenna into a solid beam while achieving a 25.66° beam deflection synchronously. The second lens further deflects the beam, and two-dimensional beam scanning within a conical angle of ±60° can be realized by independently rotating the two layers of lenses.
    Results
    A beam scanning lens antenna operating at 14.25 GHz with an axial length of 5.6λ is designed and simulated. During the scanning process, the gain varies within the range of 34.7–37.9 dB, the reflection coefficient remains consistently below −25 dB, and the maximum aperture efficiency exceeds 79%, with the PHC of the beam scanning antenna exceeds 1 GW.
    Conclusions
    The antenna proposed in this paper exhibits excellent beam scanning performance and high PHC, demonstrating great potential for applications in the HPM field.
  • loading
  • [1]
    Ding Yafei, Zou Ziwen, Luo Yong, et al. A lens antenna with reconfigurable beams for mmWave wind profile radar[J]. Sensors, 2022, 22: 3148. doi: 10.3390/s22093148
    [2]
    Datta S, Upda L. Microwave imaging sensor system using metamaterial lens for subwavelength resolution[J]. NDT & E International, 2023, 139: 102908. doi: 10.1016/j.ndteint.2023.102908
    [3]
    Moon H J, Jeon H B, Chae C B. RF lens antenna array-based one-shot coarse pointing for hybrid RF/FSO communications[J]. IEEE Wireless Communications Letters, 2022, 11(2): 240-244. doi: 10.1109/LWC.2021.3124809
    [4]
    Wan Yinglu, Liao Shaowei, Li Liangying, et al. Phased array antenna with top-truncated dome lens for wide-angle scanning[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(6): 5066-5077. doi: 10.1109/TAP.2024.3399920
    [5]
    Panzner B, Joestingmeier A, Omar A. Ka-Band dielectric lens antenna for resolution enhancement of a GPR[C]//Proceedings of 2008 8th International Symposium on Antennas, Propagation and EM Theory. 2008: 31-34.
    [6]
    Banik B K, Vukusic J, Merkel H, et al. A novel catadioptric dielectric lens for microwave and terahertz applications[J]. Microwave and Optical Technology Letters, 2008, 50(2): 416-419. doi: 10.1002/mop.23100
    [7]
    Ravishankar S, Biswagar P. Analysis of dielectric lens - adaptive array antennas for shaped beam applications[C]//Proceedings of 2006 IEEE Sarnoff Symposium. 2006: 1-4.
    [8]
    吴丹, 何应然, 王政, 等. 一种宽带高增益太赫兹透镜天线及其组阵设计[J]. 无线电工程, 2023, 53(3): 727-734 doi: 10.3969/j.issn.1003-3106.2023.03.029

    Wu Dan, He Yingran, Wang Zheng, et al. Design of a broadband high-gain terahertz lens antenna and antenna array[J]. Radio Engineering, 2023, 53(3): 727-734 doi: 10.3969/j.issn.1003-3106.2023.03.029
    [9]
    Yang Yaguang. Analytic solution of free space optical beam steering using Risley prisms[J]. Journal of Lightwave Technology, 2008, 26(21): 3576-3583. doi: 10.1109/JLT.2008.917323
    [10]
    Lu Yafei, Zhou Yuan, Hei Mo, et al. Theoretical and experimental determination of steering mechanism for Risley prism systems[J]. Applied Optics, 2013, 52(7): 1389-1398. doi: 10.1364/AO.52.001389
    [11]
    Pozar D M. Flat lens antenna concept using aperture coupled microstrip patches[J]. Electronics Letters, 1996, 32(23): 2109-2111. doi: 10.1049/el:19961451
    [12]
    Rahmati B, Hassani H R. Low-profile slot transmitarray antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(1): 174-181. doi: 10.1109/TAP.2014.2368576
    [13]
    Abdelrahman A H, Elsherbeni A Z, Yang Fan. High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1288-1291. doi: 10.1109/LAWP.2014.2334663
    [14]
    Gagnon N, Petosa A. Using rotatable planar phase shifting surfaces to steer a high-gain beam[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3086-3092. doi: 10.1109/TAP.2013.2253298
    [15]
    Afzal M U, Esselle K P. Steering the beam of medium-to-high gain antennas using near-field phase transformation[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1680-1690. doi: 10.1109/TAP.2017.2670612
    [16]
    Afzal M U, Esselle K P. Application of near-field phase transformation to steer the beam of high-gain antennas in two dimensions[C]//Proceedings of 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. 2017: 1947-1948.
    [17]
    Phillion R H, Okoniewski M. Lenses for circular polarization using planar arrays of rotated passive elements[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(4): 1217-1227. doi: 10.1109/TAP.2011.2109694
    [18]
    Benford J. History and future of high power microwaves[J]. IEEE Transactions on Plasma Science, 2024, 52(4): 1137-1144. doi: 10.1109/TPS.2024.3391732
    [19]
    Xu Weili, Ling Junpu, Song Lili, et al. Enhancing long-pulse operation of Ku-band TTO microwave source for GW-level applications[J]. IEEE Transactions on Electron Devices, 2024, 71(5): 3183-3188. doi: 10.1109/TED.2024.3373372
    [20]
    孙云飞, 张强, 刘璇, 等. 高功率一维波束扫描透镜天线: CN117578093A[P]. 2024-02-20

    Sun Yunfei, Zhang Qiang, Liu Xuan, et al. High-power one-dimensional beam scanning lens antenna: CN117578093A[P]. 2024-02-20
    [21]
    Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal transmit-array for circular polarization design using rotated cross-slot elements for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3253-3256. doi: 10.1109/tap.2017.2691460
    [22]
    Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal beam steering lens antenna for high power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7340-7344.
    [23]
    赵雪龙. 高功率微波过模转换及波束扫描透镜天线研究[D]. 长沙: 国防科技大学, 2017

    Zhao Xuelong. Investigation on mode conversion in over-moded state and beam steering lens antenna for high power microwave applications[D]. Changsha: National University of Defense Technology, 2017
    [24]
    Sun Yunfei, Dang Fangchao, Yuan Chengwei, et al. A beam-steerable lens antenna for Ku-band high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7580-7583. doi: 10.1109/TAP.2020.2979282
    [25]
    Zhao Xuhao, Liu Mengqi, Sun Yunfei, et al. Design and experimental demonstration of a beam scanning lens antenna[J]. Review of Scientific Instruments, 2022, 93: 084703. doi: 10.1063/5.0091152
    [26]
    Bankman I. Frequency selective surfaces: theory and design [Book Review][J]. IEEE Signal Processing Magazine, 2001, 18: 94. doi: 10.1109/msp.2001.911199
    [27]
    彭升人. 高功率微波TM0n混合模式诊断与转换发射技术研究[D]. 长沙: 国防科学技术大学, 2016

    Peng Shengren. Investigation on diagnosis and conversion transmission techniques of TM0n Mixed modes for high-power microwave applications[D]. Changsha: National University of Defense Technology, 2016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article views (5) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return