| Citation: | Feng Yuanwei, Zheng Yulai, Li Yong, et al. Feasibility study on neutron multiplicity counting method based on neural network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250245 |
| [1] |
Shin T H, Di Fulvio A, Clarke S D, et al. Prompt fission neutron anisotropy in low-multiplying subcritical plutonium metal assemblies[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 915: 110-115. doi: 10.1016/j.nima.2018.09.085
|
| [2] |
Nakae L F, Chapline G F, Glenn A M, et al. The use of fast neutron detection for materials accountability[J]. International Journal of Modern Physics: Conference Series, 2014, 27: 1460140. doi: 10.1142/S2010194514601409
|
| [3] |
易凌帆. 中子多重性测量分析方法仿真研究[D]. 衡阳: 南华大学, 2016
Yi Lingfan. Simulation study of neutron multiplicity measurement and analysis methods[D]. Hengyang: University of South China, 2016
|
| [4] |
Di Fulvio A, Shin T H, Jordan T, et al. Passive assay of plutonium metal plates using a fast-neutron multiplicity counter[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 855: 92-101.
|
| [5] |
Di Fulvio A, Shin T H, Basley A, et al. Fast-neutron multiplicity counter for active measurements of uranium oxide certified material[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907: 248-257. doi: 10.1016/j.nima.2018.05.049
|
| [6] |
Hou Suxia, Luo Jijun. Improvement of plutonium sample property measurement based on fast neutron multiplicity counting[J]. Annals of Nuclear Energy, 2021, 156: 108219. doi: 10.1016/j.anucene.2021.108219
|
| [7] |
Heger G, Dubi C, Ocherashvili A, et al. Identifying neutron shielding in neutron multiplicity counting[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 901: 40-45. doi: 10.1016/j.nima.2018.05.058
|
| [8] |
Langner D G, Stewart J E, Pickrell M M, et al. Application guide to neutron multiplicity counting[R]. LA-13422-M, 1998.
|
| [9] |
刘晓波, 胡倩, 肖建国. 铀材料的中子多重性测量分析方法[J]. 核动力工程, 2009, 30(1): 74-77
Liu Xiaobo, Hu Qian, Xiao Jianguo. Neutron multiplicity counting and analysis for uranium material[J]. Nuclear Power Engineering, 2009, 30(1): 74-77
|
| [10] |
Ming Xingchen, Zhang Hongfei, Xu Ruirui, et al. Nuclear mass based on the multi-task learning neural network method[J]. Nuclear Science and Techniques, 2022, 33: 48. doi: 10.1007/s41365-022-01031-z
|
| [11] |
韦子豪, 王端, 王东东, 等. 神经网络-遗传复合算法在压水堆堆芯换料设计中的应用[J]. 原子能科学技术, 2020, 54(5): 825-834 doi: 10.7538/yzk.2019.youxian.0788
Wei Zihao, Wang Duan, Wang Dongdong, et al. Application of neural network-genetic composite algorithm in core refueling design for PWR[J]. Atomic Energy Science and Technology, 2020, 54(5): 825-834 doi: 10.7538/yzk.2019.youxian.0788
|
| [12] |
Li Yongyi, Zhang Fan, Su Jun. Improvement of the Bayesian neural network to study the photoneutron yield cross sections[J]. Nuclear Science and Techniques, 2022, 33: 135. doi: 10.1007/s41365-022-01131-w
|
| [13] |
Shang Tianshuai, Li Jian, Niu Zhongming. Prediction of nuclear charge density distribution with feedback neural network[J]. Nuclear Science and Techniques, 2022, 33: 153. doi: 10.1007/s41365-022-01140-9
|
| [14] |
Wang Zi’ao, Pei Junchen, Liu Yue, et al. Bayesian evaluation of incomplete fission yields[J]. Physical Review Letters, 2019, 123: 122501. doi: 10.1103/PhysRevLett.123.122501
|
| [15] |
黎素芬, 张全虎, 弟宇鸣, 等. 有源中子多重性测量计算机模拟研究[C]//第十六届全国核电子学与核探测技术学术年会论文集(下册). 2012: 654-661
Li Sufen, Zhang Quanhu, Di Yuming, et al. Computer simulation research of active neutron multiplicity counting and analysis[C]//Proceedings of the 16th National Academic Annual Conference on Nuclear Electronics and Nuclear Detection Technology. 2012: 654-661
|
| [16] |
Zhang A, Lipton Z C, Li Mu, et al. Dive into deep learning[M]. Cambridge: Cambridge University Press, 2023.
|
| [17] |
Gu Jiuxiang, Wang Zhenhua, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. doi: 10.1016/j.patcog.2017.10.013
|
| [18] |
杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(s2): 1-6,26 doi: 10.11896/jsjkx.220600007
Yang Li, Wu Yuxi, Wang Junli, et al. Research on recurrent neural network[J]. Journal of Computer Applications, 2018, 38(s2): 1-6,26 doi: 10.11896/jsjkx.220600007
|
| [19] |
Agostinelli S, Allison J, Amako K, et al. GEANT4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
|
| [20] |
Menlove H O. Description and operation manual for the active well coincidence counter[R]. LA-7823-M, 1979.
|
| [21] |
Canberra JCC-71 product description, Canberra, measurement solutions for nuclear safety and security[EB/OL]. 2010. http://www.canberra.com/products/715.asp.
|
| [22] |
李永明, 王亮, 陈想林, 等. 252Cf自发裂变中子发射率符合测量的回归分析[J]. 物理学报, 2018, 67: 242901 doi: 10.7498/aps.67.20181073
Li Yongming, Wang Liang, Chen Xianglin, et al. Regression analysis of coincidence measurements for determinating the neutron emission rate of 252Cf spontaneous fission[J]. Acta Physica Sinica, 2018, 67: 242901 doi: 10.7498/aps.67.20181073
|
| [23] |
Tagziria H, Looman M. The ideal neutron energy spectrum of 241AmLi(α, n)10B sources[J]. Applied Radiation and Isotopes, 2012, 70(10): 2395-2402. doi: 10.1016/j.apradiso.2012.07.008
|
| [24] |
朱剑钰, 李瑞, 黄孟, 等. 用时序探测事件模拟提升中子多重性计算效率[J]. 强激光与粒子束, 2018, 30: 026003 doi: 10.11884/HPLPB201830.170256
Zhu Jianyu, Li Rui, Huang Meng, et al. Improving calculation efficiency of neutron multiplicity counting by sequential detection events simulation[J]. High Power Laser and Particle Beams, 2018, 30: 026003 doi: 10.11884/HPLPB201830.170256
|