Turn off MathJax
Article Contents
Wang Chuanchuan, Han Hui, Wang Manxi, et al. A DOA estimation method for mixed coherent and incoherent signals under colored noise[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250250
Citation: Wang Chuanchuan, Han Hui, Wang Manxi, et al. A DOA estimation method for mixed coherent and incoherent signals under colored noise[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250250

A DOA estimation method for mixed coherent and incoherent signals under colored noise

doi: 10.11884/HPLPB202638.250250
  • Received Date: 2025-08-05
  • Accepted Date: 2025-11-25
  • Rev Recd Date: 2025-12-08
  • Available Online: 2026-01-05
  • Backgrounds
    In complex electromagnetic environments, due to the multipath propagation of signals and the impact of co-channel interference, direction-finding systems will receive coherent signals. The mutual coupling between antenna elements or the inconsistency of gains will cause the superimposed noise of each channel to become spatial colored noise. Due to the low signal-to-noise ratio (SNR) of signals or short transmission time, it is difficult to obtain sufficient high-quality signal samples. When using array direction finding systems for DOA estimation, it is difficult to achieve DOA estimation under conditions of small samples, overlapping colored noise, and coherent incident signals.
    Purpose
    This study aims how to solve the array direction-finding problems caused by radiation source coherence, aliased colored noise and small samples, which has become a research hotspot and difficulty in array signal processing area.
    Methods
    From the requirement of DOA estimation of narrowband signals, A DOA estimation method is proposed for small samples, overlapping colored noise, and coherent incident signals by using covariance matrix shrinkage estimation to improve the covariance estimation effect under small sample conditions, then using the covariance difference method to process the shrunk covariance matrix to suppress colored noise and signal coherence, and finally applying the MUSIC algorithm for DOA estimation.
    Results
    Simulation experiments verify the effectiveness of the proposed method, providing an effective solution for solving DOA estimation problems in complex environments.
    Conclusions
    The proposed method offers an effective approach to array direction-finding under complex environments.
  • loading
  • [1]
    张小飞, 李建峰, 徐大专. 传感器阵列测向与定位[M]. 北京: 电子工业出版社, 2025

    Zhang Xiaofei, Li Jianfeng, Xu Dazhuan. Direction finding and positioning with sensor array[M]. Beijing: Publishing House of Electronics Industry, 2025
    [2]
    张薇. 基于矩阵重构的相干信源波达方向估计算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021

    Zhang Wei. Study on direction of arrival estimation for coherent signals based on matrix reconstruction[D]. Harbin: Harbin Institute of Technology, 2021
    [3]
    Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408-1418. doi: 10.1109/PROC.1969.7278
    [4]
    Pisarenko V F. The retrieval of harmonics from a covariance function[J]. Geophysical Journal International, 1973, 33(3): 347-366. doi: 10.1111/j.1365-246X.1973.tb03424.x
    [5]
    Ng B P. Constraints for linear predictive and minimum-norm methods in bearing estimation[J]. IEE Proceedings F (Radar and Signal Processing), 1990, 137(3): 187-191. doi: 10.1049/ip-f-2.1990.0028
    [6]
    Chen Y H, Chiang C T. Kalman-based spatial domain forward-backward linear predictor for DOA estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(1): 474-479. doi: 10.1109/7.366330
    [7]
    Schmidt R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986.1143830
    [8]
    Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995. doi: 10.1109/29.32276
    [9]
    Chen Feng, Yang Desen, Mo Shiqi. A DOA estimation algorithm based on eigenvalues ranking problem[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 9501315. doi: 10.1109/tim.2022.3232095
    [10]
    Xu Wenjie, Liu Mindong, Yi Shichao. Spectrum attention mechanism-based acoustic vector DOA estimation method in the presence of colored noise[J]. Applied Sciences, 2025, 15: 1473. doi: 10.3390/app15031473
    [11]
    钱诚. 相干信源波达方向估计中的若干问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2016

    Qian Cheng. Study on several key problems of coherent DOA estimation[D]. Harbin: Harbin Institute of Technology, 2016
    [12]
    Hu Jurong, Baidoo E, Tian Ying, et al. Hermitian transform-based differencing approach for angle estimation for bistatic MIMO radar under unknown colored noise field[J]. IEEE Access, 2020, 8: 129553-129561. doi: 10.1109/ACCESS.2020.3007547
    [13]
    Ma Xiurong, Dong Xuhao, Xie Yufeng. An improved spatial differencing method for DOA estimation with the coexistence of uncorrelated and coherent Signals[J]. IEEE Sensors Journal, 2016, 16(10): 3719-3723. doi: 10.1109/JSEN.2016.2532929
    [14]
    Qian Cheng, Huang Lei, Sidiropoulos N D, et al. Enhanced PUMA for direction-of-arrival estimation and its performance analysis[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4127-4137. doi: 10.1109/TSP.2016.2543206
    [15]
    Karth I, Smith A M. WaveFunctionCollapse: content generation via constraint solving and machine learning[J]. Journal of Latex Class Files, 2015, 14(8): 1-9. doi: 10.1109/tg.2021.3076368
    [16]
    Shi Heping, Li Zhuo, Liu Dun, et al. Efficient method of two-dimensional DOA estimation for coherent signals[J]. EURASIP Journal on Wireless Communications and Networking, 2017, 2017: 53. doi: 10.1186/s13638-017-0835-1
    [17]
    邢秋军. 无源相干信号波达方向估计算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018

    Xing Qiujun. Research on DOA estimation algorithm of passive coherent signal[D]. Harbin: Harbin Engineering University, 2018
    [18]
    Li Jianxiong, Li Deming, Li Xianguo. A real-valued toeplitz matrix method for DOA estimation[J]. Canadian Journal of Electrical and Computer Engineering, 2020, 43(4): 350-356. doi: 10.1109/CJECE.2020.3005226
    [19]
    邢路阳. 相干信源波达方向估计算法研究[D]. 北京: 北京工业大学, 2024

    Xing Luyang. Research on DOA estimation algorithm for coherent sources[D]. Beijing: Beijing University of Technology, 2024
    [20]
    Cong Jingyu, Wang Xianpeng, Lan Xiang, et al. A generalized noise reconstruction approach for robust DOA estimation[J]. IEEE Transactions on Radar Systems, 2023, 1: 382-394. doi: 10.1109/TRS.2023.3299184
    [21]
    Yang Long, Yang Yixin, Zhang Yahao. Subspace-based direction of arrival estimation in colored ambient noise environments[J]. Digital Signal Processing, 2020, 99: 102650. doi: 10.1016/j.dsp.2019.102650
    [22]
    Wang Junxiang, Wang Xianpeng, Xu Dingjie, et al. Robust angle estimation for MIMO radar with the coexistence of mutual coupling and colored noise[J]. Sensors, 2018, 18: 832. doi: 10.3390/s18030832
    [23]
    饶伟, 贾凤勤, 李旦. 有色噪声下不相关和相干混合信号的DOA估计[J]. 电子学报, 2023, 51(3): 622-631 doi: 10.12263/DZXB.20211216

    Rao Wei, Jia Fengqin, Li Dan. DOA estimation of uncorrelated and coherent mixed signals in colored noise[J]. Acta Electronica Sinica, 2023, 51(3): 622-631 doi: 10.12263/DZXB.20211216
    [24]
    Yi Huiyue. Source enumeration via RMT estimator with adaptive decision criterion based on linear shrinkage estimation of noise eigenvalues using relatively few samples[J]. IET Signal Processing, 2022, 16(1): 26-44. doi: 10.1049/sil2.12077
    [25]
    刘妍妍. 大维随机矩阵理论在阵列信号参数估计中的应用[D]. 长春: 吉林大学, 2017

    Liu Yanyan. Applications of large random matrix theory to array signal parameters estimation[D]. Changchun: Jilin University, 2017
    [26]
    马内尔·马丁内斯-拉蒙, 阿琼·古普塔, 何塞·路易斯·罗霍-阿尔瓦雷斯, 等. 机器学习在电磁学和阵列天线处理中的应用[M]. 曾勇虎, 贾锐, 王川川, 等, 译. 北京: 国防工业出版社, 2024

    Martínez-Ramón M, Gupta A, Rojo-Álvarez J L, et al. Machine learning applications in electromagnetics and antenna array processing[M]. Zeng Yonghu, Jia Rui Wang Chuanchuan, et al, trans. Beijing: National Defense Industry Press, 2024
    [27]
    Shu Feng, Shi Baihua, Chen Yiwen, et al. A new heterogeneous hybrid massive MIMO receiver with an intrinsic ability of removing phase ambiguity of DOA estimation via machine learning[J]. IEEE Transactions on Machine Learning in Communications and Networking, 2025, 3: 17-29. doi: 10.1109/TMLCN.2024.3506874
    [28]
    Kyritsis A, Makri R, Uzunoglu N. Small UAS online audio DOA estimation and real-time identification using machine learning[J]. Sensors, 2022, 22: 8659. doi: 10.3390/s22228659
    [29]
    韦娟, 陈茂楠, 宁方立. 基于子张量重构的宽带信号DOA估计[J]. 通信学报, 2025, 46(8): 31-40 doi: 10.11959/j.issn.1000-436x.2025152

    Wei Juan, Chen Maonan, Ning Fangli. DOA estimation of wideband signals based on sub-tensor reconstruction[J]. Journal on Communications, 2025, 46(8): 31-40 doi: 10.11959/j.issn.1000-436x.2025152
    [30]
    董洁, 王立府, 王鹏. 基于分子群改进海象优化算法的矢量水听器宽带信号DOA估计[J]. 测试技术学报, 2024, 38(6): 642-651 doi: 10.3969/j.issn.1671-7449.2024076

    Dong Jie, Wang Lifu, Wang Peng. DOA estimation of wideband signals from vector hydrophones based on molecular group improved whale optimization algorithm[J]. Journal of Test and Measurement Technology, 2024, 38(6): 642-651 doi: 10.3969/j.issn.1671-7449.2024076
    [31]
    Huang Lei, So H C. Source enumeration via MDL criterion based on linear shrinkage estimation of noise subspace covariance matrix[J]. IEEE Transactions on Signal Processing, 2013, 61(19): 4806-4821. doi: 10.1109/TSP.2013.2273198
    [32]
    Liu Fulai, Wang Jinkun, Sun Changyin, et al. Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(4): 2052-2062. doi: 10.1109/TAP.2012.2186216
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (30) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return