Turn off MathJax
Article Contents
Shu Chang, Chen Dongxu, Xing Yingbin, et al. A high-brightness, linearly polarized laser output of 5 kW achieved by low-NA fiber[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250251
Citation: Shu Chang, Chen Dongxu, Xing Yingbin, et al. A high-brightness, linearly polarized laser output of 5 kW achieved by low-NA fiber[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250251

A high-brightness, linearly polarized laser output of 5 kW achieved by low-NA fiber

doi: 10.11884/HPLPB202638.250251
  • Received Date: 2022-08-05
  • Accepted Date: 2025-10-31
  • Rev Recd Date: 2025-10-31
  • Available Online: 2025-12-15
  • Background
    Fiber lasers have gained extensive adoption across medical, telecommunications, industrial processing, and defense sectors owing to their exceptional beam quality, operational stability, compact architecture, and high reliability. Among them, narrow-linewidth linearly polarized fiber lasers have become a key research focus due to their outstanding spectral purity and coherence, with current efforts concentrated on further scaling their output power and brightness.
    Purpose
    In this work, we demonstrate a 5.09 kW narrow-linewidth linearly polarized fiber laser system designed to overcome stimulated Brillouin scattering (SBS) and transverse mode instability (TMI).
    Methods
    A white-noise radio frequency phase modulation scheme is implemented to broaden the seed laser spectrum into a Gaussian profile with 89 GHz full width at half maximum, enabling effective SBS suppression. A polarization-maintaining ytterbium-doped fiber (PMYDF) with low numerical aperture (~0.05), large mode area (~237 μm2), and high birefringence coefficient (4.23×10−4) is employed to simultaneously mitigate SBS and intermodal thermal coupling.
    Results
    The system achieves 5.09 kW output power while maintaining an 89 GHz spectral linewidth, polarization extinction ratio above 19.6 dB, and beam quality factor of M2 < 1.2. No self-pulsing or temporal instability is observed at maximum power, confirming suppression of both SBS and TMI.
    Conclusions
    By employing a white-noise radio frequency signal to modulate the phase of a single-frequency laser, the SBS effect in high-power fiber laser systems is effectively suppressed. Concurrently, intermodal thermal coupling and SBS are further mitigated using a fabricated low-numerical-aperture, large-mode-area PMYDF. The demonstrated performance supports the feasibility of high-power, narrow-linewidth polarized fiber lasers for long-term stable operation.
  • loading
  • [1]
    Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [2]
    Liu Zejin, Zhou Pu, Xu Xiaojun, et al. Coherent beam combining of high power fiber lasers: progress and prospect[J]. Science China Technological Sciences, 2013, 56(7): 1597-1606. doi: 10.1007/s11431-013-5260-z
    [3]
    Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071. doi: 10.1364/OE.24.012063
    [4]
    Liu Zejin, Ma Pengfei, Su Rongtao, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited][J]. Journal of the Optical Society of America B, 2017, 34(3): A7-A14. doi: 10.1364/JOSAB.34.0000A7
    [5]
    Ma Pengfei, Lü Yang, Zhou Pu, et al. Investigation of the influence of mode-mismatch errors on active coherent polarization beam combining system[J]. Optics Express, 2014, 22(22): 27321-27338. doi: 10.1364/OE.22.027321
    [6]
    柏刚, 杨依枫, 晋云霞, 等. 光谱合成激光光束特性的研究进展[J]. 激光与光电子学进展, 2019, 56: 040004

    Bai Gang, Yang Yifeng, Jin Yunxia, et al. Research progress on laser beam characteristics in spectral beam combining system[J]. Laser & Optoelectronics Progress, 2019, 56: 040004
    [7]
    王岩山, 彭万敬, 王珏, 等. 4.45kW窄线宽线偏振近单模全光纤激光器[J]. 中国激光, 2022, 49: 1816003

    Wang Yanshan, Peng Wanjing, Wang Jue, et al. 4.45kW narrow linewidth line-polarized near-single mode all-fiber laser[J]. Chinese Journal of Lasers, 2022, 49: 1816003
    [8]
    王岩山, 彭万敬, 王珏, 等. 10 GHz窄线宽线偏振近单模全光纤激光器实现5 kW功率输出[J]. 中国激光, 2023, 50: 2416002

    Wang Yanshan, Peng Wanjing, Wang Jue, et al. 10 GHz narrow linewidth line-polarized near-single mode all-fiber laser achieving 5 kW power output[J]. Chinese Journal of Lasers, 2023, 50: 2416002
    [9]
    任帅, 陈益沙, 马鹏飞, 等. 4.5kW, 0.33 nm近单模窄线宽保偏光纤激光器[J]. 强激光与粒子束, 2022, 34: 065002 doi: 10.11884/HPLPB202234.220168

    Ren Shuai, Chen Yisha, Ma Pengfei, et al. 4.5 kW, 0.33 nm near-single-mode narrow linewidth polarization-maintained fiber laser[J]. High Power Laser and Particle Beams, 2022, 34: 065002 doi: 10.11884/HPLPB202234.220168
    [10]
    Liao Shibiao, Luo Tao, Xiao Runheng, et al. 4.6 kW linearly polarized and narrow-linewidth monolithic fiber amplifier based on a fiber oscillator laser seed[J]. Optics Letters, 2023, 48(24): 6533-6536. doi: 10.1364/OL.507009
    [11]
    Yang Huan, Chen Yisha, Ma Pengfei, et al. 5.85kW polarization-maintained and all-fiberized amplifier with narrow linewidth and near-diffraction-limited beam quality assisted by low-numerical-aperture active fiber[J]. Optics & Laser Technology, 2025, 190: 113208.
    [12]
    Gao Zixiang, Shu Qiang, Li Fang, et al. A 6 kW level linearly polarized near-diffraction-limited monolithic fiber laser with a 0.43 nm linewidth[J]. Photonics, 2025, 12: 701. doi: 10.3390/photonics12070701
    [13]
    Aoki Y, Tajima K, Mito I. Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems[J]. Journal of Lightwave Technology, 1988, 6(5): 710-719. doi: 10.1109/50.4057
    [14]
    Jauregui C, Eidam T, Otto H J, et al. Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(1): 440-451. doi: 10.1364/OE.20.000440
    [15]
    Zervas M N. Transverse-modal-instability gain in high power fiber amplifiers: effect of the perturbation relative phase[J]. APL Photonics, 2019, 4: 022802. doi: 10.1063/1.5050523
    [16]
    闫景涛, 缪立军, 毛建峰, 等. 高斯白噪声相位调制的激光光谱展宽[J]. 光谱学与光谱分析, 2022, 42(3): 665-671

    Yan Jingtao, Miao Lijun, Mao Jianfeng, et al. Laser spectrum broadening method based on phase modulation of Gaussian white noise[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 665-671
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (35) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return