Turn off MathJax
Article Contents
Wang Jinhu, Sun Mengqi, Yan Yifan, et al. Study on dual-polarization scattering characteristics of millimeter-wave nonspherical ice crystals[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250261
Citation: Wang Jinhu, Sun Mengqi, Yan Yifan, et al. Study on dual-polarization scattering characteristics of millimeter-wave nonspherical ice crystals[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250261

Study on dual-polarization scattering characteristics of millimeter-wave nonspherical ice crystals

doi: 10.11884/HPLPB202638.250261
  • Received Date: 2025-08-15
  • Accepted Date: 2025-12-02
  • Rev Recd Date: 2025-12-16
  • Available Online: 2025-12-27
  • Background
    Traditional Mie theory, assuming spherical particles, is inadequate for characterizing the scattering of atmospheric non-spherical ice crystals. Existing studies are largely limited to single frequency (e.g., 94 GHz), lacking systematic quantification of key dual-polarization parameters across the millimeter/submillimeter wave spectrum, which constrains the accuracy of polarimetric radar for meteorological target detection and classification.
    Purpose
    This study aims to systematically investigate the dual-polarization scattering properties of six typical non-spherical ice crystals—hexagonal columns, plates, hollow columns, bullet rosettes, aggregates, and supercooled water droplets—across 35, 94, 140, and 220 GHz bands. It quantifies the responses of differential reflectivity (ZDR) and linear depolarization ratio (LDR) to particle shape and orientation, providing crucial theoretical support for wideband polarimetric radar meteorology.
    Methods
    Scattering models were developed using the Discrete Dipole Approximation (DDA) and Finite-Difference Time-Domain (FDTD) methods, cross-validated with commercial software (XFDTD, HFSS). Backscattering cross-sections, ZDR, and LDR were computed for different ice crystals across the frequency bands, analyzing the influence of particle size, geometry, and frequency.
    Results
    1)The reliability of DDA was systematically validated across the 35–220 GHz range. Calculation errors for backscattering cross-sections were ≤1.5 dB for all particles except highly random aggregates. 2) Radar reflectivity factor showed a coupled wavelength dependence: small particles (equivalent radius <100 μm) were wavelength-insensitive (<1 dB difference), while large particles (>100 μm) exhibited significant shape-dependent resonance. The equivalent radius corresponding to resonance extrema increased with wavelength. 3) Characteristic ranges of ZDR and LDR for the six ice crystal types were quantified. Hexagonal plates showed the widest ZDR range (9 dB to –9 dB), while axisymmetric particles exhibited stable LDR values (–40 dB to –50 dB).
    Conclusions
    This wideband, multi-particle study addresses prior limitations in frequency coverage and parameter quantification. It demonstrates that the shape-sensitive ZDR and LDR parameters can reduce dependence on particle size distribution and significantly improve ice crystal identification accuracy, providing a key theoretical basis for millimeter/submillimeter wave polarimetric radar applications in cloud microphysics and meteorological target classification.
  • loading
  • [1]
    魏邦海. 气溶胶和冰水两相粒子的散射特性[D]. 南京: 南京信息工程大学, 2015: 25-31

    Wei Banghai. Scattering properties of aerosols and ice water two-phase particle[D]. Nanjing: Nanjing University of Information Science & Technology, 2015: 25-31
    [2]
    董振贤, 李妙英. 双偏振多普勒天气雷达的偏振参量及其应用[J]. 解放军理工大学学报(自然科学版), 2004, 5(3): 98-102 doi: 10.3969/j.issn.1009-3443.2004.03.025

    Dong Zhenxian, Li Miaoying. Polarimetric measurements of dual-polarization radar and application[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2004, 5(3): 98-102 doi: 10.3969/j.issn.1009-3443.2004.03.025
    [3]
    Seliga T A, Bringi V N. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation[J]. Journal of Applied Meteorology, 1976, 15(1): 69-76. doi: 10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
    [4]
    Ryzhkov A V, Zrnić D S. Comparison of dual-polarization radar estimators of rain[J]. Journal of Atmospheric and Oceanic Technology, 1995, 12(12): 249-256.
    [5]
    刘黎平, 钱永甫, 王致君. 用双线偏振雷达研究云内粒子相态及尺度的空间分布[J]. 气象学报, 1996, 54(5): 590-599

    Liu Liping, Qian Yongfu, Wang Zhijun. The study of spacial distribution of phase and size of hydrometeorsin cloud by dual linear polarization radar[J]. Acta Meteorologica Sinica, 1996, 54(5): 590-599
    [6]
    曹俊武, 刘黎平, 葛润生. 模糊逻辑法在双线偏振雷达识别降水粒子相态中的研究[J]. 大气科学, 2005, 29(5): 827-836

    Cao Junwu, Liu Liping, Ge Runsheng. A study of fuzzy logic method in classification of hydrometeors based on polarimetric radar measurement[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(5): 827-836
    [7]
    王金虎, 蔡嘉晗, 谢槟泽, 等. 基于Mie散射的带电粒子散射特性的研究[J]. 光散射学报, 2021, 33(1): 65-71 doi: 10.13883/j.issn1004-5929.202101009

    Wang Jinhu, Cai Jiahan, Xie Binze, et al. Study on the scattering characteristics of charged particles based on Mie scattering[J]. The Journal of Light Scattering, 2021, 33(1): 65-71 doi: 10.13883/j.issn1004-5929.202101009
    [8]
    Purcell E M, Pennypacker C R. Scattering and absorption of light by nonspherical dielectric grains[J]. The Astrophysical Journal, 1973, 186: 705-714. doi: 10.1086/152538
    [9]
    Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J]. Journal of the Optical Society of America A, 1994, 11(4): 1491-1499. doi: 10.1364/JOSAA.11.001491
    [10]
    任神河, 高明, 王明军, 等. 不同空间取向冰晶粒子的光散射[J]. 红外与激光工程, 2024, 53: 20240336 doi: 10.3788/IRLA20240336

    Ren Shenhe, Gao Ming, Wang Mingjun, et al. Light scattering of ice crystal particles with different spatial orientations[J]. Infrared and Laser Engineering, 2024, 53: 20240336 doi: 10.3788/IRLA20240336
    [11]
    贺锦涛, 王明军, 张佳琳. 团聚核壳蓝藻粒子的蓝绿激光散射和吸收特性研究[J]. 光学学报, 2021, 41: 1729001 doi: 10.3788/AOS202141.1729001

    He Jintao, Wang Mingjun, Zhang Jialin. Blue-green laser scattering and absorption properties of agglomerated core-shell cyanobacteria particles[J]. Acta Optica Sinica, 2021, 41: 1729001 doi: 10.3788/AOS202141.1729001
    [12]
    许小永. 非球形雨滴和冰雹微波散射特征研究[D]. 南京: 南京气象学院, 2002: 8-17

    Xu Xiaoyong. Scattering of microwaves by non-spherical raindrops and hails[D]. Nanjing: Nanjing University of Information Science & Technology, 2002: 8-17
    [13]
    冯晋勤, 张深寿, 吴陈锋, 等. 双偏振雷达产品在福建强对流天气过程中的应用分析[J]. 气象, 2018, 44(12): 1565-1574 doi: 10.7519/j.issn.1000-0526.2018.12.006

    Feng Jinqin, Zhang Shenshou, Wu Chenfeng, et al. Application of dual polarization weather radar products to severe convective weather in Fujian[J]. Meteorological Monthly, 2018, 44(12): 1565-1574 doi: 10.7519/j.issn.1000-0526.2018.12.006
    [14]
    罗晓翩, 冯力天, 尹微, 等. 基于相干激光雷达的双偏振探测技术[J]. 激光技术, 2025, 49(1): 8-13

    Luo Xiaopian, Feng Litian, Yin Wei, et al. Dual polarization detection technology based on coherent LiDAR[J]. Laser Technology, 2025, 49(1): 8-13
    [15]
    Gallagher M W, Connolly P J, Whiteway J, et al. An overview of the microphysical structure of cirrus clouds observed during EMERALD-1[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(607): 1143-1169. doi: 10.1256/qj.03.138
    [16]
    Baran A J. A review of the light scattering properties of cirrus[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(14/16): 1239-1260.
    [17]
    Hong G. Radar backscattering properties of nonspherical ice crystals at 94 GHz[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D22203.
    [18]
    Polyanskiy M N. Refractiveindex. info database of optical constants[J]. Scientific Data, 2024, 11: 94. doi: 10.1038/s41597-023-02898-2
    [19]
    王金虎, 葛俊祥, 杨泽鑫, 等. 毫米波频率下冰晶粒子散射特性的研究[C]//第31届中国气象学会年会S1气象雷达探测技术研究与应用. 2014: 346-351

    Wang Jinhu, Ge Junxiang, Yang Zexin, et al. Study on the scattering characteristics of ice crystal particles at millimeter-wave frequencies[C]//The 31st Annual Conference of the Chinese Meteorological Society S1: Research and Application of Meteorological Radar Detection Technology. 2014: 346-351
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (57) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return