| Citation: | Guan Wei, Zhou Zexian, Zhang Zhao, et al. Characterization and mitigation of oscilloscope baseline distortion caused by transient electromagnetic pulse in diamond detector TOF measurement[J]. High Power Laser and Particle Beams, 2026, 38: 014003. doi: 10.11884/HPLPB202638.250262 |
| [1] |
马文君, 刘志鹏, 王鹏杰, 等. 激光加速高能质子实验研究进展及新加速方案[J]. 物理学报, 2021, 70: 084102 doi: 10.7498/aps.70.20202115
Ma Wenjun, Liu Zhipeng, Wang Pengjie, et al. Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes[J]. Acta Physica Sinica, 2021, 70: 084102 doi: 10.7498/aps.70.20202115
|
| [2] |
杨月, 孙斌, 邓志刚, 等. 拍瓦激光驱动纳米刷靶高品质质子束的产生[J]. 强激光与粒子束, 2024, 36: 101004 doi: 10.11884/HPLPB202436.230440
Yang Yue, Sun Bin, Deng Zhigang, et al. Generation of high-quality proton beam in nanobrush targets driven by PW laser pulse[J]. High Power Laser and Particle Beams, 2024, 36: 101004 doi: 10.11884/HPLPB202436.230440
|
| [3] |
Poole P L, Obst L, Cochran G E, et al. Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime[J]. New Journal of Physics, 2018, 20: 013019. doi: 10.1088/1367-2630/aa9d47
|
| [4] |
Labaune C, Baccou C, Depierreux S, et al. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma[J]. Nature Communications, 2013, 4: 2506. doi: 10.1038/ncomms3506
|
| [5] |
Huang Chengkun, Alvarez M A, Batha S H, et al. Characterization of laser-accelerated proton beams from a 0.5 kJ sub-picosecond laser for radiography applications[J]. Physics of Plasmas, 2025, 32: 033107. doi: 10.1063/5.0251284
|
| [6] |
Guo Zhiyuan, Liu Shuang, Zhou Bing, et al. Preclinical tumor control with a laser-accelerated high-energy electron radiotherapy prototype[J]. Nature Communications, 2025, 16: 1895. doi: 10.1038/s41467-025-57122-z
|
| [7] |
Bolton P R, Borghesi M, Brenner C, et al. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams[J]. Physica Medica, 2014, 30(3): 255-270. doi: 10.1016/j.ejmp.2013.09.002
|
| [8] |
Torrisi L, Costa G. Ion acceleration by fs laser in target-normal-sheath-acceleration regime and comparison of time-of-flight spectra with particle-in-cell simulations[J]. Physical Review Accelerators and Beams, 2020, 23: 011304. doi: 10.1103/PhysRevAccelBeams.23.011304
|
| [9] |
Zhou Zexian, Guo Bin, Cheng Rui, et al. In situ ions energy spectrum measurement using a diamond detector in laser-accelerated ions–plasma interaction[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1026: 166191. doi: 10.1016/j.nima.2021.166191
|
| [10] |
Scuderi V, Milluzzo G, Doria D, et al. TOF diagnosis of laser accelerated, high-energy protons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 978: 164364. doi: 10.1016/j.nima.2020.164364
|
| [11] |
Ren Jieru, Deng Zhigang, Qi Wei, et al. Observation of a high degree of stopping for laser-accelerated intense proton beams in dense ionized matter[J]. Nature Communications, 2020, 11: 5157. doi: 10.1038/s41467-020-18986-5
|
| [12] |
Torrisi L, Foti G, Giuffrida L, et al. Single crystal silicon carbide detector of emitted ions and soft x rays from power laser-generated plasmas[J]. Journal of Applied Physics, 2009, 105: 123304. doi: 10.1063/1.3153160
|
| [13] |
伍波, 董克攻, 吴玉迟, 等. 利用CR39上的径迹鉴别激光加速离子产物[J]. 强激光与粒子束, 2013, 25(2): 381-384 doi: 10.3788/HPLPB20132502.0381
Wu Bo, Dong Kegong, Wu Yuchi, et al. Identification of ion products produced from laser acceleration experiments using tracks on CR39[J]. High Power Laser and Particle Beams, 2013, 25(2): 381-384 doi: 10.3788/HPLPB20132502.0381
|
| [14] |
Jahn D, Träger M, Kis M, et al. Chemical-vapor deposited ultra-fast diamond detectors for temporal measurements of ion bunches[J]. Review of Scientific Instruments, 2018, 89: 093304. doi: 10.1063/1.5048667
|
| [15] |
Tapper R J. Diamond detectors in particle physics[J]. Reports on Progress in Physics, 2000, 63(8): 1273-1316. doi: 10.1088/0034-4885/63/8/203
|
| [16] |
He Qiangyou, Wang Zitao, Deng Zhigang, et al. Generation and regulation of electromagnetic pulses induced by multi-petawatt laser coupling with gas jets[J]. Nuclear Science and Techniques, 2025, 36: 100. doi: 10.1007/s41365-025-01692-6
|
| [17] |
Poyé A, Hulin S, Bailly-Grandvaux M, et al. Physics of giant electromagnetic pulse generation in short-pulse laser experiments[J]. Physical Review E, 2015, 91: 043106. doi: 10.1103/PhysRevE.91.043106
|
| [18] |
Xia Yadong, Zhang Feng, Cai Hongbo, et al. Analysis of electromagnetic pulses generation from laser coupling with polymer targets: effect of metal content in target[J]. Matter and Radiation at Extremes, 2020, 5: 017401. doi: 10.1063/1.5114663
|
| [19] |
He Q Y, Yan W, Liu Z P, et al. Measurement of electromagnetic pulse in laser acceleration enhanced by near-critical density targets[J]. Physics of Plasmas, 2024, 31: 103303. doi: 10.1063/5.0231143
|
| [20] |
Wu Yuchi, Zhu Bin, Dong Kegong, et al. XingGuang III laser facility and its experimental ability to drive high-energy particle beams[J]. Laser Physics, 2020, 30: 096001. doi: 10.1088/1555-6611/aba3ca
|
| [21] |
张强强, 于明海, 魏来, 等. 皮秒脉冲激光产生的X射线源能谱精密诊断[J]. 强激光与粒子束, 2022, 34: 122004 doi: 10.11884/HPLPB202234.220327
Zhang Qiangqiang, Yu Minghai, Wei Lai, et al. Spectrum measurements for picosecond laser produced X-ray sources[J]. High Power Laser and Particle Beams, 2022, 34: 122004 doi: 10.11884/HPLPB202234.220327
|
| [22] |
Zhang Zhao, Li Yaju, Yang Guanghui, et al. Estimating the grain size of microgranular material using laser-induced breakdown spectroscopy combined with machine learning algorithms[J]. Plasma Science and Technology, 2024, 26: 055506. doi: 10.1088/2058-6272/ad1792
|