| Citation: | Bai Tianzi, Huai Ying, Liu Tingting, et al. Excited state reaction kinetics regression based on sequence-to-sequence learning[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250298 |
| [1] |
Waichman K, Barmashenko B D, Rosenwaks S. Comparing modeling and measurements of the output power in chemical oxygen-iodine lasers: a stringent test of I2 dissociation mechanisms[J]. The Journal of Chemical Physics, 2010, 133: 084301. doi: 10.1063/1.3480397
|
| [2] |
Li Hui, Zhao Tianliang, Li Jiaxu, et al. State-to-state chemical kinetic mechanism for HF chemical lasers[J]. Combustion Theory and Modelling, 2020, 24(1): 129-141. doi: 10.1080/13647830.2019.1662490
|
| [3] |
D’Alessio G, Sundaresan S, Mueller M E. Automated and efficient local adaptive regression for principal component-based reduced-order modeling of turbulent reacting flows[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5249-5258. doi: 10.1016/j.proci.2022.07.235
|
| [4] |
Kochkov D, Smith J A, Alieva A, et al. Machine learning–accelerated computational fluid dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118: e2101784118.
|
| [5] |
Ding Tianjie, Readshaw T, Rigopoulos S, et al. Machine learning tabulation of thermochemistry in turbulent combustion: an approach based on hybrid flamelet/random data and multiple multilayer perceptrons[J]. Combustion and Flame, 2021, 231: 111493. doi: 10.1016/j.combustflame.2021.111493
|
| [6] |
Ortega A G, Shirin A. Neural network-based descent control for Landers with sloshing and mass variation: a cascade and adaptive PID strategy[J]. Aerospace, 2024, 11: 1009. doi: 10.3390/aerospace11121009
|
| [7] |
Zhang Shihong, Zhang Chi, Wang Bosen. CRK-PINN: a physics-informed neural network for solving combustion reaction kinetics ordinary differential equations[J]. Combustion and Flame, 2024, 269: 113647. doi: 10.1016/j.combustflame.2024.113647
|
| [8] |
Hughes G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1): 55-63. doi: 10.1109/TIT.1968.1054102
|
| [9] |
Han Peilun, Shen Xiaoqian, Shen Boxiong. A simulation study on NOx reduction efficiency in SCR catalysts utilizing a modern C3-CNN algorithm[J]. Fuel, 2024, 363: 130985. doi: 10.1016/j.fuel.2024.130985
|
| [10] |
Ihme M, Chung W T, Mishra A A. Combustion machine learning: principles, progress and prospects[J]. Progress in Energy and Combustion Science, 2022, 91: 101010. doi: 10.1016/j.pecs.2022.101010
|
| [11] |
Shin J, Hansinger M, Pfitzner M, et al. A priori analysis on deep learning of filtered reaction rate[J]. Flow, Turbulence and Combustion, 2022, 109(2): 383-409. doi: 10.1007/s10494-022-00330-0
|
| [12] |
Zhang Tianhan, Yi Yuxiao, Xu Yifan, et al. A multi-scale sampling method for accurate and robust deep neural network to predict combustion chemical kinetics[J]. Combustion and Flame, 2022, 245: 112319. doi: 10.1016/j.combustflame.2022.112319
|
| [13] |
Bai Tianzi, Huai Ying, Liu Tingting, et al. Acceleration of the complex reacting flow simulation with a generalizable neural network based on meta-learning[J]. Fuel, 2024, 372: 132173. doi: 10.1016/j.fuel.2024.132173
|
| [14] |
Kretzschmar R, Karayiannis N B, Eggimann F. Feedforward neural network models for handling class overlap and class imbalance[J]. International Journal of Neural Systems, 2005, 15(5): 323-338. doi: 10.1142/S012906570500030X
|
| [15] |
Baskerville N P, Granziol D, Keating J P. Appearance of Random Matrix Theory in deep learning[J]. Physica A: Statistical Mechanics and its Applications, 2022, 590: 126742. doi: 10.1016/j.physa.2021.126742
|
| [16] |
Zhang Yu, Du Wenli. Intelligent time-scale operator-splitting integration for chemical reaction systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8): 3366-3376. doi: 10.1109/TNNLS.2020.3006348
|
| [17] |
Marcato A, Santos J E, Boccardo G, et al. Prediction of local concentration fields in porous media with chemical reaction using a multi scale convolutional neural network[J]. Chemical Engineering Journal, 2023, 455: 140367. doi: 10.1016/j.cej.2022.140367
|
| [18] |
Sun Jie, Wang Yiqing, Tian Baolin, et al. DetonationFoam: an open-source solver for simulation of gaseous detonation based on OpenFOAM[J]. Computer Physics Communications, 2023, 292: 108859. doi: 10.1016/j.cpc.2023.108859
|
| [19] |
Salunkhe A, Deighan D, DesJardin P E, et al. Physics informed machine learning for chemistry tabulation[J]. Journal of Computational Science, 2023, 69: 102001. doi: 10.1016/j.jocs.2023.102001
|
| [20] |
Xu Kailai, Darve E. Physics constrained learning for data-driven inverse modeling from sparse observations[J]. Journal of Computational Physics, 2022, 453: 110938. doi: 10.1016/j.jcp.2021.110938
|
| [21] |
Sutskever I, Vinyals O, Le Q V. Sequence to Sequence Learning with Neural Networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. 2014: 3104-3112.
|
| [22] |
Liu Bowen, Ramsundar B, Kawthekar P, et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models[J]. ACS Central Science, 2017, 3(10): 1103-1113. doi: 10.1021/acscentsci.7b00303
|
| [23] |
Manke II G C, Hager G D. A review of recent experiments and calculations relevant to the kinetics of the HF laser[J]. Journal of Physical and Chemical Reference Data, 2001, 30(3): 713-733. doi: 10.2514/6.2002-2219
|
| [24] |
Abadi M, Barham P, Chen Jianmin, et al. TensorFlow: a system for large-scale machine learning[C]//Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. 2016: 265-283.
|
| [25] |
Goodwin D G, Moffat H K, Speth R L. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes[R]. Version 2.2. 0, 2015.
|