| Citation: | He Feihang, Li Weiren, Dong Yufeng, et al. Experimental study of electromagnetic pulse generation induced by laser interaction with solid targets on the Shenguang II upgrade facility[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250352 |
| [1] |
Carillon A, Chen H Z, Dhez P, et al. Saturated and near-diffraction-limited operation of an XUV laser at 23.6 nm[J]. Physical Review Letters, 1992, 68(19): 2917-2920. doi: 10.1103/PhysRevLett.68.2917
|
| [2] |
Cipiccia S, Wiggins S M, Shanks R P, et al. A tuneable ultra-compact high-power, ultra-short pulsed, bright gamma-ray source based on bremsstrahlung radiation from laser-plasma accelerated electrons[J]. Journal of Applied Physics, 2012, 111: 063302. doi: 10.1063/1.3693537
|
| [3] |
Esarey E, Shadwick B A, Catravas P, et al. Synchrotron radiation from electron beams in plasma-focusing channels[J]. Physical Review E, 2002, 65: 056505. doi: 10.1103/PhysRevE.65.056505
|
| [4] |
Ledingham K W D, Spencer I, McCanny T, et al. Photonuclear physics when a multiterawatt laser pulse interacts with solid targets[J]. Physical Review Letters, 2000, 84(5): 899-902. doi: 10.1103/PhysRevLett.84.899
|
| [5] |
Lee K S H. EMP interaction: principles, techniques, and reference data[M]. Washington: Hemisphere Publishing Corporation, 1986.
|
| [6] |
Kojima S, Hata M, Iwata N, et al. Electromagnetic field growth triggering super-ponderomotive electron acceleration during multi-picosecond laser-plasma interaction[J]. Communications Physics, 2019, 2: 99. doi: 10.1038/s42005-019-0197-6
|
| [7] |
Consoli F, Tikhonchuk V T, Bardon M, et al. Laser produced electromagnetic pulses: generation, detection and mitigation[J]. High Power Laser Science and Engineering, 2020, 8: e22. doi: 10.1017/hpl.2020.13
|
| [8] |
Consoli F, Andreoli P L, Cipriani M, et al. Sources and space–time distribution of the electromagnetic pulses in experiments on inertial confinement fusion and laser–plasma acceleration[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379: 20200022. doi: 10.1098/rsta.2020.0022
|
| [9] |
Krása J, Krupka M, Agarwal S, et al. Advanced diagnostics of electrons escaping from laser-produced plasma[J]. Plasma, 2024, 7(2): 366-385. doi: 10.3390/plasma7020021
|
| [10] |
Cikhardt J, Bradford P W, Ehret M, et al. Comprehensive characterization of electromagnetic pulses driven by a sub-nanosecond kilojoule laser[J]. High Power Laser Science and Engineering, 2025, 13: e57. doi: 10.1017/hpl.2025.10035
|
| [11] |
Lee J, Nam S. Effective area of a receiving antenna in a lossy medium[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(6): 1843-1845. doi: 10.1109/TAP.2009.2019988
|
| [12] |
Dubois J L, Lubrano-Lavaderci F, Raffestin D, et al. Target charging in short-pulse-laser–plasma experiments[J]. Physical Review E, 2014, 89: 013102. doi: 10.1103/PhysRevE.89.013102
|
| [13] |
Poyé A, Dubois J L, Lubrano-Lavaderci F, et al. Dynamic model of target charging by short laser pulse interactions[J]. Physical Review E, 2015, 92: 043107. doi: 10.1103/PhysRevE.92.043107
|
| [14] |
Poyé A, Hulin S, Bailly-Grandvaux M, et al. Physics of giant electromagnetic pulse generation in short-pulse laser experiments[J]. Physical Review E, 2015, 91: 043106. doi: 10.1103/PhysRevE.91.043106
|
| [15] |
Bradford P, Woolsey N C, Scott G G, et al. EMP control and characterization on high-power laser systems[J]. High Power Laser Science and Engineering, 2018, 6: e21. doi: 10.1017/hpl.2018.21
|
| [16] |
Felber F S. Dipole radio-frequency power from laser plasmas with no dipole moment[J]. Applied Physics Letters, 2005, 86: 231501. doi: 10.1063/1.1947911
|
| [17] |
Pompili R, Anania M P, Bisesto F, et al. Ultrafast evolution of electric fields from high-intensity laser-matter interactions[J]. Scientific Reports, 2018, 8: 3243. doi: 10.1038/s41598-018-21711-4
|
| [18] |
Poyé A, Hulin S, Ribolzi J, et al. Thin target charging in short laser pulse interactions[J]. Physical Review E, 2018, 98: 033201. doi: 10.1103/PhysRevE.98.033201
|
| [19] |
Mead M J, Neely D, Gauoin J, et al. Electromagnetic pulse generation within a petawatt laser target chamber[J]. Review of Scientific Instruments, 2004, 75(10): 4225-4227. doi: 10.1063/1.1787606
|
| [20] |
Robinson T S, Consoli F, Giltrap S, et al. Low-noise time-resolved optical sensing of electromagnetic pulses from petawatt laser-matter interactions[J]. Scientific Reports, 2017, 7: 983. doi: 10.1038/s41598-017-01063-1
|
| [21] |
Raven A, Rumsby P T, Stamper J A, et al. Dependence of spontaneous magnetic fields in laser produced plasmas on target size and structure[J]. Applied Physics Letters, 1979, 35(7): 526-528. doi: 10.1063/1.91196
|
| [22] |
Wilks S C, Kruer W L, Tabak M, et al. Absorption of ultra-intense laser pulses[J]. Physical Review Letters, 1992, 69(9): 1383-1386. doi: 10.1103/PhysRevLett.69.1383
|
| [23] |
Nakamura T, Kato S, Tamimoto M, et al. Stochastic acceleration by intense laser fields[J]. Physics of Plasmas, 2002, 9(5): 1801-1805. doi: 10.1063/1.1468231
|
| [24] |
Tanimoto M, Kato S, Miura E, et al. Direct electron acceleration by stochastic laser fields in the presence of self-generated magnetic fields[J]. Physical Review E, 2003, 68: 026401. doi: 10.1103/PhysRevE.68.026401
|
| [25] |
Johzaki T, Nagatomo H, Sunahara A, et al. Pre-plasma effects on core heating and enhancing heating efficiency by extended double cone for FIREX[J]. Nuclear Fusion, 2011, 51: 073022. doi: 10.1088/0029-5515/51/7/073022
|