| Citation: | Li Xintao, Liu Hui, Qiao Shuo, et al. Laser self-mixing interference micro displacement reconstruction based on convolutional neural network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250370 |
| [1] |
Guo Changying, Wang Qi. Laser self-mixing interference displacement signal filtering method based on empirical mode decomposition and wavelet threshold[J]. Measurement Science and Technology, 2024, 35: 045201. doi: 10.1088/1361-6501/ad166c
|
| [2] |
Li Qinyu, Li Quan, Wei Xia, et al. Laser self-mixing interferometry for direct displacement reconstruction using deep learning[J]. Optics & Laser Technology, 2025, 192: 113423. doi: 10.1016/j.optlastec.2025.113423
|
| [3] |
Liu Hui, Li Xintao, You Yaqiang, et al. Wiener filtering in wavelet domain on laser self-mixing interference for micro-displacement reconstruction[J]. Photonics, 2025, 12: 40. doi: 10.3390/photonics12010040
|
| [4] |
Skripal A V, Dobdin S Y, Inkin M G, et al. Measurement of distance by the maximum frequency of the interference signal with harmonic deviation of the wavelength of the self-mixing laser[J]. Technical Physics, 2024, 69(5): 1400-1406. doi: 10.1134/S1063784224040406
|
| [5] |
曹雪, 冯立娜, 王秀芳, 等. 基于差分的激光自混合光栅干涉位移测量[J]. 吉林大学学报(信息科学版), 2023, 41(4): 583-589 doi: 10.3969/j.issn.1671-5896.2023.04.002
Cao Xue, Feng Lina, Wang Xiufang, et al. Displacement measurement of self-mixing grating interferometer based on difference[J]. Journal of Jilin University (Information Science Edition), 2023, 41(4): 583-589 doi: 10.3969/j.issn.1671-5896.2023.04.002
|
| [6] |
张玉杰, 徐雷, 管钰晴, 等. 基于平面反射式全息光栅的激光自混合纳米位移测量研究[J]. 红外与激光工程, 2023, 52: 20220676 doi: 10.3788/IRLA20220676
Zhang Yujie, Xu Lei, Guan Yuqing, et al. Research on laser self-mixing Nano-displacement measurement based on plane reflective holographic grating[J]. Infrared and Laser Engineering, 2023, 52: 20220676 doi: 10.3788/IRLA20220676
|
| [7] |
彭婉妮, 牛海莎, 潘雨婷, 等. 基于全光纤激光自混合干涉技术的石英玻璃热光系数测量[J]. 光电子·激光, 2022, 33(6): 578-584 doi: 10.16136/j.joel.2022.06.0684
Peng Wanni, Niu Haisha, Pan Yuting, et al. Measurement of thermo-optical coefficient of quartz glass based on all-fiber laser self-mixing interference technology[J]. Journal of Optoelectronics·Laser, 2022, 33(6): 578-584 doi: 10.16136/j.joel.2022.06.0684
|
| [8] |
张晨, 陈涛, 赵宇. 基于激光自混合干涉技术的单个微纳颗粒探测[J]. 激光与光电子学进展, 2020, 57: 192803 doi: 10.3788/LOP57.192803
Zhang Chen, Chen Tao, Zhao Yu. Single micro-Nano particle detection based on laser self-mixing interference technology[J]. Laser & Optoelectronics Progress, 2020, 57: 192803 doi: 10.3788/LOP57.192803
|
| [9] |
蔡家轩, 楚卫东. 基于THz-QCL自混合干涉的运动传感[J]. 太赫兹科学与电子信息学报, 2022, 20(10): 985-990 doi: 10.11805/TKYDA2021303
Cai Jiaxuan, Chu Weidong. Motion sensing based on Self-Mixing interferometry with THz-QCL[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(10): 985-990 doi: 10.11805/TKYDA2021303
|
| [10] |
Yu Lian, Yang Yu, Liu Bin, et al. Laser self-mixing interference: optical fiber coil sensors for acoustic emission detection[J]. Photonics, 2023, 10: 958. doi: 10.3390/photonics10090958
|
| [11] |
Xie Yan, Wang Yingxin, Li Lianhe, et al. Realization of high depth resolution using two-beam self-mixing interferometry with a terahertz quantum cascade laser[J]. Optics Communications, 2023, 545: 129737. doi: 10.1016/j.optcom.2023.129737
|
| [12] |
Jha A, Cenkeramaddi L R, Royo S. Generalized multi-cavity laser self-mixing interferometry based on scattering theory[J]. Optics Express, 2023, 31(10): 16508-16522. doi: 10.1364/OE.484086
|
| [13] |
Liu Hui, You Yaqiang, Li Sijia, et al. Denoising of laser self-mixing interference by improved wavelet threshold for high performance of displacement reconstruction[J]. Photonics, 2023, 10: 943. doi: 10.3390/photonics10080943
|
| [14] |
尤亚强, 李鑫涛, 刘晖, 等. 基于小波阈值滤波和S-G滤波相结合的激光自混合干涉微位移重构[J]. 强激光与粒子束, 2024, 36: 081002 doi: 10.11884/HPLPB202436.240125
You Yaqiang, Li Xintao, Liu Hui, et al. Micro displacement reconstruction of laser self mixing interference based on wavelet threshold filtering and S-G filtering[J]. High Power Laser and Particle Beams, 2024, 36: 081002 doi: 10.11884/HPLPB202436.240125
|
| [15] |
吴军, 陈杨, 赵君伟, 等. 基于激光自混合原理的涡轮叶片转速与叶尖间隙动态同步测量方法[J]. 仪器仪表学报, 2023, 44(11): 13-21 doi: 10.19650/j.cnki.cjsi.J2311652
Wu Jun, Chen Yang, Zhao Junwei, et al. Dynamic synchronous measurement method of turbine blade speed and blade tip clearance based on laser self-mixing principle[J]. Chinese Journal of Scientific Instrument, 2023, 44(11): 13-21 doi: 10.19650/j.cnki.cjsi.J2311652
|
| [16] |
韩玉祥, 丛至诚, 高丙坤, 等. 基于激光自混合干涉调频信号的位移测量实验[J]. 激光与红外, 2022, 52(5): 695-699
Han Yuxiang, Cong Zhicheng, Gao Bingkun, et al. Displacement measurement experiment based on laser self mixing interference frequency modulation signal[J]. Laser & Infrared, 2022, 52(5): 695-699
|
| [17] |
Zhao Yan, Zhang Baofeng, Han Lianfu. Laser self-mixing interference displacement measurement based on VMD and phase unwrapping[J]. Optics Communications, 2020, 456: 124588. doi: 10.1016/j.optcom.2019.124588
|
| [18] |
樊毓臻, 寇科, 王晛, 等. 线性调频激光自混合干涉双通道微位移测量方法研究[J]. 仪器仪表学报, 2023, 44(10): 22-29
Fan Yuzhen, Kou Ke, Wang Xian, et al. Study on the dual-channel displacement measurement method using linearly tuned laser self-mixing interference[J]. Chinese Journal of Scientific Instrument, 2023, 44(10): 22-29
|
| [19] |
Huang Yidan, Lai Wenzong, Chen Enguo. Displacement sensing for laser self-mixing interferometry by amplitude modulation and integral reconstruction[J]. Sensors, 2024, 24: 3785. doi: 10.3390/s24123785
|
| [20] |
Awad A, Eldosoky M A A, Soliman A M, et al. Automatic diagnosis of hyperkinetic dysphonia from speech recordings based on deep learning approaches[J]. Engineering Research Express, 2025, 7: 035263. doi: 10.1088/2631-8695/adf9c3
|
| [21] |
Liu Ying, Xue Jiahao, Li Daxiang, et al. Image recognition based on lightweight convolutional neural network: recent advances[J]. Image and Vision Computing, 2024, 146: 105037. doi: 10.1016/j.imavis.2024.105037
|
| [22] |
Farajollahi A, Fakhrabadi M M S. Convolutional neural networks to predict dispersion surfaces-based properties of acoustic metamaterials with arbitrary-shaped unit cells[J]. Results in Engineering, 2025, 26: 104905. doi: 10.1016/j.rineng.2025.104905
|
| [23] |
Novac P E, Rodriguez L, Barland S. Integrating embedded neural networks and self-mixing interferometry for smart sensors design[C]//2024 IEEE Sensors Applications Symposium (SAS). 2024: 1-6.
|
| [24] |
An Lei, Liu Bin. Measuring parameters of laser self-mixing interferometry sensor based on back propagation neural network[J]. Optics Express, 2022, 30(11): 19134-19144. doi: 10.1364/OE.460625
|
| [25] |
Siddiqui A A, Zabit U, Bernal O D. Fringe detection and displacement sensing for variable optical feedback-based self-mixing interferometry by using deep neural networks[J]. Sensors, 2022, 22: 9831. doi: 10.3390/s22249831
|
| [26] |
Sawada A, Miyagawa T, Ebihara A, et al. Convolutional neural networks for time-dependent classification of variable-length time series[C]//Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN). 2022: 1-8.
|
| [27] |
Chagnon J, Hagenbuchner M, Tsoi A C, et al. On the effects of recursive convolutional layers in convolutional neural networks[J]. Neurocomputing, 2024, 591: 127767. doi: 10.1016/j.neucom.2024.127767
|
| [28] |
Walter B. Analysis of convolutional neural network image classifiers in a hierarchical max-pooling model with additional local pooling[J]. Journal of Statistical Planning and Inference, 2023, 224: 109-126. doi: 10.1016/j.jspi.2022.11.001
|
| [29] |
Liu Bin, Ruan Yuxi, Yu Yanguang. Determining system parameters and target movement directions in a laser self-mixing interferometry sensor[J]. Photonics, 2022, 9: 612. doi: 10.3390/photonics9090612
|