| Citation: | Chen Ziyu. Controlling laser-plasma high harmonics and attosecond pulses with structured light[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250371 |
| [1] |
Winterfeldt C, Spielmann C, Gerber G. Colloquium: Optimal control of high-harmonic generation[J]. Reviews of Modern Physics, 2008, 80(1): 117-140. doi: 10.1103/RevModPhys.80.117
|
| [2] |
Goulielmakis E, Brabec T. High harmonic generation in condensed matter[J]. Nature Photonics, 2022, 16(6): 411-421. doi: 10.1038/s41566-022-00988-y
|
| [3] |
Teubner U, Gibbon P. High-order harmonics from laser-irradiated plasma surfaces[J]. Reviews of Modern Physics, 2009, 81(2): 445-479. doi: 10.1103/RevModPhys.81.445
|
| [4] |
Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-234. doi: 10.1103/RevModPhys.81.163
|
| [5] |
Gordienko S, Pukhov A, Shorokhov O, et al. Coherent focusing of high harmonics: A new way towards the extreme intensities[J]. Physical Review Letters, 2005, 94: 103903. doi: 10.1103/PhysRevLett.94.103903
|
| [6] |
Vincenti H. Achieving extreme light intensities using optically curved relativistic plasma mirrors[J]. Physical Review Letters, 2019, 123: 105001. doi: 10.1103/PhysRevLett.123.105001
|
| [7] |
Quéré F, Vincenti H. Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit[J]. High Power Laser Science and Engineering, 2021, 9: e6. doi: 10.1017/hpl.2020.46
|
| [8] |
Vincenti H, Clark T, Fedeli L, et al. Plasma mirrors as a path to the Schwinger limit: theoretical and numerical developments[J]. The European Physical Journal Special Topics, 2023, 232(13): 2303-2346. doi: 10.1140/epjs/s11734-023-00909-2
|
| [9] |
Marklund M, Blackburn T G, Gonoskov A, et al. Towards critical and supercritical electromagnetic fields[J]. High Power Laser Science and Engineering, 2023, 11: e19. doi: 10.1017/hpl.2022.46
|
| [10] |
Quéré F, Thaury C, Monot P, et al. Coherent wake emission of high-order harmonics from overdense plasmas[J]. Physical Review Letters, 2006, 96: 125004. doi: 10.1103/PhysRevLett.96.125004
|
| [11] |
Baeva T, Gordienko S, Pukhov A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma[J]. Physical Review E, 2006, 74: 046404. doi: 10.1103/PhysRevE.74.046404
|
| [12] |
an der Brügge D, Pukhov A. Enhanced relativistic harmonics by electron nanobunching[J]. Physics of Plasmas, 2010, 17: 033110. doi: 10.1063/1.3353050
|
| [13] |
Bulanov S V, Naumova N M, Pegoraro F. Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma[J]. Physics of Plasmas, 1994, 1(3): 745-757. doi: 10.1063/1.870766
|
| [14] |
Lichters R, Meyer-ter-Vehn J, Pukhov A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity[J]. Physics of Plasmas, 1996, 3(9): 3425-3437. doi: 10.1063/1.871619
|
| [15] |
Gordienko S, Pukhov A, Shorokhov O, et al. Relativistic Doppler effect: Universal spectra and zeptosecond pulses[J]. Physical Review Letters, 2004, 93: 115002. doi: 10.1103/PhysRevLett.93.115002
|
| [16] |
Dromey B, Zepf M, Gopal A, et al. High harmonic generation in the relativistic limit[J]. Nature Physics, 2006, 2(7): 456-459. doi: 10.1038/nphys338
|
| [17] |
Dromey B, Kar S, Bellei C, et al. Bright Multi-keV harmonic generation from relativistically oscillating plasma surfaces[J]. Physical Review Letters, 2007, 99: 085001. doi: 10.1103/PhysRevLett.99.085001
|
| [18] |
Gonoskov A A, Korzhimanov A V, Kim A V, et al. Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[J]. Physical Review E, 2011, 84: 046403. doi: 10.1103/PhysRevE.84.046403
|
| [19] |
Mikhailova J M, Fedorov M V, Karpowicz N, et al. Isolated attosecond pulses from laser-driven synchrotron radiation[J]. Physical Review Letters, 2012, 109: 245005. doi: 10.1103/PhysRevLett.109.245005
|
| [20] |
Dromey B, Rykovanov S, Yeung M, et al. Coherent synchrotron emission from electron nanobunches formed in relativistic laser–plasma interactions[J]. Nature Physics, 2012, 8(11): 804-808. doi: 10.1038/nphys2439
|
| [21] |
Rubinsztein-Dunlop H, Forbes A, Berry M V, et al. Roadmap on structured light[J]. Journal of Optics, 2017, 19: 013001. doi: 10.1088/2040-8978/19/1/013001
|
| [22] |
Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nature Photonics, 2021, 15(4): 253-262. doi: 10.1038/s41566-021-00780-4
|
| [23] |
Harrison J, Naidoo D, Forbes A, et al. Progress in high-power and high-intensity structured light[J]. Advances in Physics: X, 2024, 9: 2327453. doi: 10.1080/23746149.2024.2327453
|
| [24] |
Piccardo M, Cernaianu M O, Palastro J P, et al. Trends in relativistic laser–matter interaction: the promises of structured light[J]. Optica, 2025, 12(6): 732-752. doi: 10.1364/OPTICA.558754
|
| [25] |
Chen Ziyu, Pukhov A. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror[J]. Nature Communications, 2016, 7: 12515. doi: 10.1038/ncomms12515
|
| [26] |
Ma Guangjin, Yu Wei, Yu M Y, et al. Intense circularly polarized attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses[J]. Optics Express, 2016, 24(9): 10057-10065. doi: 10.1364/OE.24.010057
|
| [27] |
Blanco M, Flores-Arias M T, Gonoskov A. Controlling the ellipticity of attosecond pulses produced by laser irradiation of overdense plasmas[J]. Physics of Plasmas, 2018, 25: 093114. doi: 10.1063/1.5044482
|
| [28] |
Jiang Yan, Wang Qing, Cao Lihua, et al. Enhancement of brightness of high-order harmonics with elliptical polarization from near-critical density plasmas irradiated by an ultraintense laser pulse[J]. Physics of Plasmas, 2020, 27: 083101. doi: 10.1063/1.5144587
|
| [29] |
Chen Ziyu, Li Xiaoya, Li Boyuan, et al. Isolated elliptically polarized attosecond soft X-ray with high-brilliance using polarization gating of harmonics from relativistic plasmas at oblique incidence[J]. Optics Express, 2018, 26(4): 4572-4580. doi: 10.1364/OE.26.004572
|
| [30] |
Chen Ziyu. Isolated attosecond pulse in the water window from many-cycle laser-driven plasma mirrors without pulse engineering[J]. Optics Letters, 2018, 43(9): 2114-2117. doi: 10.1364/OL.43.002114
|
| [31] |
Wang Jingwei, Bulanov S V, Chen Min, et al. Relativistic slingshot: A source for single circularly polarized attosecond x-ray pulses[J]. Physical Review E, 2020, 102: 061201. doi: 10.1103/PhysRevE.102.061201
|
| [32] |
Chen Minli, Xu Xinrong, Li Qianni, et al. Single attosecond pulse generation from a capacitor target irraidated by a circularly polarized laser[J]. Optics Express, 2025, 33(6): 12797-12808. doi: 10.1364/OE.555436
|
| [33] |
Chen Ziyu. Spectral control of high harmonics from relativistic plasmas using bicircular fields[J]. Physical Review E, 2018, 97: 043202. doi: 10.1103/PhysRevE.97.043202
|
| [34] |
Xie Duan, Yin Yan, Yu Tongpu, et al. High harmonic generation driven by two-color relativistic circularly polarized laser pulses at various frequency ratios[J]. Plasma Science and Technology, 2021, 23: 045502. doi: 10.1088/2058-6272/abe848
|
| [35] |
Li Qianni, Xu Xinrong, Wu Yanbo, et al. Generation of single circularly polarized attosecond pulses from near-critical density plasma irradiated by a two-color co-rotating circularly polarized laser[J]. Optics Express, 2022, 30(22): 40063-40074. doi: 10.1364/OE.472982
|
| [36] |
Zhong C L, Qiao B, Xu X R, et al. Intense circularly polarized attosecond pulse generation from solid targets irradiated with a two-color linearly polarized laser[J]. Physical Review A, 2020, 101: 053814. doi: 10.1103/PhysRevA.101.053814
|
| [37] |
Zhong Conglin, Qiao Bin, Zhang Yuxue, et al. Production of intense isolated attosecond pulses with circular polarization by using counter-propagating relativistic lasers[J]. New Journal of Physics, 2021, 23: 063080. doi: 10.1088/1367-2630/ac09c7
|
| [38] |
Zhong C L, Zhang Y, Li X B, et al. Emissions of brilliant attosecond pulse in circular polarization by using inclined lasers[J]. Physics of Plasmas, 2021, 28: 093105. doi: 10.1063/5.0057689
|
| [39] |
Zagidullin R, Zorina V, Wang J W, et al. Polarization control of attosecond pulses from laser-nanofoil interactions using an external magnetic field[J]. Physics of Plasmas, 2024, 31: 073303. doi: 10.1063/5.0213592
|
| [40] |
Pan Chenhao, Wang Jingwei, Luan Shixia, et al. Circularly polarized attosecond pulses generation from laser interaction with magnetized sub-critical plasmas[J]. Plasma Physics and Controlled Fusion, 2023, 65: 065006. doi: 10.1088/1361-6587/accd1b
|
| [41] |
Zaïm N, Guénot D, Chopineau L, et al. Interaction of ultraintense radially-polarized laser pulses with plasma mirrors[J]. Physical Review X, 2020, 10: 041064.
|
| [42] |
Chen Ziyu, Hu Ronghao. Intense high-order harmonic vector beams from relativistic plasma mirrors[J]. Physical Review A, 2021, 103: 023507. doi: 10.1103/PhysRevA.103.023507
|
| [43] |
Nye J F, Berry M V. Dislocations in wave trains[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1974, 336(1605): 165-190. doi: 10.1098/rspa.1974.0012
|
| [44] |
Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
|
| [45] |
Zhang Xiaomei, Shen Baifei, Shi Yin, et al. Generation of intense high-order vortex harmonics[J]. Physical Review Letters, 2015, 114: 173901. doi: 10.1103/PhysRevLett.114.173901
|
| [46] |
Li Shasha, Shen Baifei, Zhang Xiaomei, et al. Conservation of orbital angular momentum for high harmonic generation of fractional vortex beams[J]. Optics Express, 2018, 26(18): 23460-23470. doi: 10.1364/OE.26.023460
|
| [47] |
Xie Duan, Yin Yan, Yu Tongpu, et al. High-order vortex harmonics generation by bi-circular Laguerre-Gaussian laser fields with relativistic plasmas[J]. Frontiers in Physics, 2022, 10: 962956. doi: 10.3389/fphy.2022.962956
|
| [48] |
Wang J W, Zepf M, Rykovanov S G. Intense attosecond pulses carrying orbital angular momentum using laser plasma interactions[J]. Nature Communications, 2019, 10: 5554. doi: 10.1038/s41467-019-13357-1
|
| [49] |
Li Shasha, Zhang Xiaomei, Gong Weifeng, et al. Spin-to-orbital angular momentum conversion in harmonic generation driven by intense circularly polarized laser[J]. New Journal of Physics, 2020, 22: 013054. doi: 10.1088/1367-2630/ab6873
|
| [50] |
Yi Longqing. High-harmonic generation and spin-orbit interaction of light in a relativistic oscillating window[J]. Physical Review Letters, 2021, 126: 134801. doi: 10.1103/PhysRevLett.126.134801
|
| [51] |
Trines R, Schmitz H, King M, et al. Laser harmonic generation with independent control of frequency and orbital angular momentum[J]. Nature Communications, 2024, 15: 6878. doi: 10.1038/s41467-024-51311-y
|
| [52] |
Meng Yao, Li Runze, Yi Longqing. Relativistic oscillating window driven by an intense Laguerre-Gaussian laser pulse[J]. Physical Review Letters, 2025, 135: 165001. doi: 10.1103/tww5-w4fk
|
| [53] |
Fang Yiqi, Han Meng, Ge Peipei, et al. Photoelectronic mapping of the spin–orbit interaction of intense light fields[J]. Nature Photonics, 2021, 15(2): 115-120. doi: 10.1038/s41566-020-00709-3
|
| [54] |
Denoeud A, Chopineau L, Leblanc A, et al. Interaction of ultraintense laser vortices with plasma mirrors[J]. Physical Review Letters, 2017, 118: 033902. doi: 10.1103/PhysRevLett.118.033902
|
| [55] |
Leblanc A, Denoeud A, Chopineau L, et al. Plasma holograms for ultrahigh-intensity optics[J]. Nature Physics, 2017, 13(5): 440-443. doi: 10.1038/nphys4007
|
| [56] |
Bliokh K Y, Nori F. Spatiotemporal vortex beams and angular momentum[J]. Physical Review A, 2012, 86: 033824. doi: 10.1103/PhysRevA.86.033824
|
| [57] |
Jhajj N, Larkin I, Rosenthal E W, et al. Spatiotemporal optical vortices[J]. Physical Review X, 2016, 6: 031037.
|
| [58] |
Hancock S W, Zahedpour S, Goffin A, et al. Free-space propagation of spatiotemporal optical vortices[J]. Optica, 2019, 6(12): 1547-1553. doi: 10.1364/OPTICA.6.001547
|
| [59] |
Chong A, Wan Chenhao, Chen Jian, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 2020, 14(6): 350-354. doi: 10.1038/s41566-020-0587-z
|
| [60] |
Hancock S W, Zahedpour S, Milchberg H M. Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum[J]. Optica, 2021, 8(5): 594-597. doi: 10.1364/OPTICA.422743
|
| [61] |
Bliokh K Y. Spatiotemporal vortex pulses: Angular momenta and spin-orbit interaction[J]. Physical Review Letters, 2021, 126: 243601. doi: 10.1103/PhysRevLett.126.243601
|
| [62] |
Fang Yiqi, Lu Shengyue, Liu Yunquan. Controlling photon transverse orbital angular momentum in high harmonic generation[J]. Physical Review Letters, 2021, 127: 273901. doi: 10.1103/PhysRevLett.127.273901
|
| [63] |
Chen Ziyu, Hu Ronghao, Zhang Sen, et al. Relativistic high-order harmonic generation of spatiotemporal optical vortices[J]. Physical Review A, 2022, 106: 013516. doi: 10.1103/PhysRevA.106.013516
|
| [64] |
Zhang Lingang, Ji Liangliang, Shen Baifei. Intense harmonic generation driven by a relativistic spatiotemporal vortex beam[J]. High Power Laser Science and Engineering, 2022, 10: e46. doi: 10.1017/hpl.2022.38
|
| [65] |
Wu Yipeng, Nie Zan, Li Fei, et al. Efficient generation of intense spatial and spatiotemporal vortex harmonics using plasma mirrors[DB/OL]. arXiv preprint arXiv: 2311.13907, 2023.
|
| [66] |
Li Xiaofei, Zhang Xiaomei, Zheng Xiaolong, et al. Diverse spatiotemporal high harmonic generation[J]. New Journal of Physics, 2025, 27: 023008. doi: 10.1088/1367-2630/adaf4f
|
| [67] |
Hu Ke, Guo Xinju, Yi Longqing. High-harmonic generation and optical torque interaction via relativistic diffraction of a spatiotemporal vortex light[DB/OL]. arXiv preprint arXiv: 2505.03215, 2025.
|
| [68] |
Gori F, Guattari G, Padovani C. Bessel-Gauss beams[J]. Optics Communications, 1987, 64(6): 491-495. doi: 10.1016/0030-4018(87)90276-8
|
| [69] |
Durnin J, Miceli J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501. doi: 10.1103/PhysRevLett.58.1499
|
| [70] |
Aiello A, Agarwal G S. Wave-optics description of self-healing mechanism in Bessel beams[J]. Optics Letters, 2014, 39(24): 6819-6822. doi: 10.1364/OL.39.006819
|
| [71] |
Thériault G, Cottet M, Castonguay A, et al. Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging[J]. Frontiers in Cellular Neuroscience, 2014, 8: 139. doi: 10.3389/fncel.2014.00139
|
| [72] |
Zhao Shengmei, Zhang Wenhao, Wang Le, et al. Propagation and self-healing properties of Bessel-Gaussian beam carrying orbital angular momentum in an underwater environment[J]. Scientific Reports, 2019, 9: 2025. doi: 10.1038/s41598-018-38409-2
|
| [73] |
Pang Zeyue, Chen Peng, Chen Ziyu. Self-healing high-order harmonic generation from curved relativistic plasma mirrors with Bessel-Gaussian beams[J]. Physical Review A, 2024, 109: 043521. doi: 10.1103/PhysRevA.109.043521
|
| [74] |
Siviloglou G A, Broky J, Dogariu A, et al. Ballistic dynamics of Airy beams[J]. Optics Letters, 2008, 33(3): 207-209. doi: 10.1364/ol.33.000207
|
| [75] |
Berry M V, Balazs N L. Nonspreading wave packets[J]. American Journal of Physics, 1979, 47(3): 264-267. doi: 10.1119/1.18177
|
| [76] |
Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99: 213901. doi: 10.1103/PhysRevLett.99.213901
|
| [77] |
Chen Peng, Pang Zeyue, Chen Ziyu. Isolated attosecond pulses from Airy-beam-driven relativistic plasma mirrors[J]. Physical Review A, 2024, 109: 013522. doi: 10.1103/PhysRevA.109.013522
|
| [78] |
Shen Yijie, Zhang Qiang, Shi Peng, et al. Optical skyrmions and other topological quasiparticles of light[J]. Nature Photonics, 2024, 18(1): 15-25. doi: 10.1038/s41566-023-01325-7
|
| [79] |
Fang Yiqi, Liu Yunquan. Generation and control of extreme ultraviolet free-space optical skyrmions with high harmonic generation[J]. Advanced Photonics Nexus, 2023, 2: 046009. doi: 10.1117/1.apn.2.4.046009
|
| [80] |
Bauer T, Banzer P, Karimi E, et al. Observation of optical polarization Möbius strips[J]. Science, 2015, 347(6225): 964-966. doi: 10.1126/science.1260635
|
| [81] |
Luttmann M, Vimal M, Guer M, et al. Nonlinear up-conversion of a polarization Möbius strip with half-integer optical angular momentum[J]. Science Advances, 2023, 9: eadf3486. doi: 10.1126/sciadv.adf3486
|
| [82] |
Shen Yijie, Yu Bingshi, Wu Haijun, et al. Topological transformation and free-space transport of photonic hopfions[J]. Advanced Photonics, 2023, 5: 015001. doi: 10.1117/1.ap.5.1.015001
|
| [83] |
Lyu Zijian, Fang Yiqi, Liu Yunquan. Formation and controlling of optical hopfions in high harmonic generation[J]. Physical Review Letters, 2024, 133: 133801. doi: 10.1103/PhysRevLett.133.133801
|
| [84] |
Kfir O, Zayko S, Nolte C, et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation[J]. Science Advances, 2017, 3: eaao4641. doi: 10.1126/sciadv.aao4641
|
| [85] |
Sun Fengyu, Wang Wenpeng, Dong Hao, et al. Generation of isolated attosecond electron sheet via relativistic spatiotemporal optical manipulation[J]. Physical Review Research, 2024, 6: 013075. doi: 10.1103/PhysRevResearch.6.013075
|