Turn off MathJax
Article Contents
Chen Ziyu. Controlling laser-plasma high harmonics and attosecond pulses with structured light[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250371
Citation: Chen Ziyu. Controlling laser-plasma high harmonics and attosecond pulses with structured light[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250371

Controlling laser-plasma high harmonics and attosecond pulses with structured light

doi: 10.11884/HPLPB202638.250371
  • Received Date: 2025-10-28
  • Accepted Date: 2025-12-10
  • Rev Recd Date: 2025-12-20
  • Available Online: 2025-12-31
  • High harmonic generation (HHG) and attosecond pulses driven by relativistically intense lasers interacting with solid-density plasma mirrors constitute a vital pathway for realizing high-brightness, short-wavelength, ultrafast coherent light sources and exploring extreme strong-field physics. In recent years, benefiting from the rapid development of laser technology, the precise control over light field degrees of freedom, such as amplitude, phase, and polarization, has spurred the emergence of structured light fields. Structured light fields significantly enrich the methods for controlling laser-matter interaction and broaden the scope of applications. This article aims to review the latest progress in controlling relativistic laser-plasma HHG and attosecond pulses using structured light fields. The work specifically discusses the characteristic control and physical mechanisms of HHG driven by novel structured light fields, including polarization structures (e.g., circularly polarized light, vector beams), phase structures (e.g., spatial vortex beams, spatiotemporal vortex beams), and amplitude structures (e.g., Bessel beams, Airy beams), with the goal of providing new perspectives for research on novel light sources based on strong-field laser-plasma interactions.
  • loading
  • [1]
    Winterfeldt C, Spielmann C, Gerber G. Colloquium: Optimal control of high-harmonic generation[J]. Reviews of Modern Physics, 2008, 80(1): 117-140. doi: 10.1103/RevModPhys.80.117
    [2]
    Goulielmakis E, Brabec T. High harmonic generation in condensed matter[J]. Nature Photonics, 2022, 16(6): 411-421. doi: 10.1038/s41566-022-00988-y
    [3]
    Teubner U, Gibbon P. High-order harmonics from laser-irradiated plasma surfaces[J]. Reviews of Modern Physics, 2009, 81(2): 445-479. doi: 10.1103/RevModPhys.81.445
    [4]
    Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-234. doi: 10.1103/RevModPhys.81.163
    [5]
    Gordienko S, Pukhov A, Shorokhov O, et al. Coherent focusing of high harmonics: A new way towards the extreme intensities[J]. Physical Review Letters, 2005, 94: 103903. doi: 10.1103/PhysRevLett.94.103903
    [6]
    Vincenti H. Achieving extreme light intensities using optically curved relativistic plasma mirrors[J]. Physical Review Letters, 2019, 123: 105001. doi: 10.1103/PhysRevLett.123.105001
    [7]
    Quéré F, Vincenti H. Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit[J]. High Power Laser Science and Engineering, 2021, 9: e6. doi: 10.1017/hpl.2020.46
    [8]
    Vincenti H, Clark T, Fedeli L, et al. Plasma mirrors as a path to the Schwinger limit: theoretical and numerical developments[J]. The European Physical Journal Special Topics, 2023, 232(13): 2303-2346. doi: 10.1140/epjs/s11734-023-00909-2
    [9]
    Marklund M, Blackburn T G, Gonoskov A, et al. Towards critical and supercritical electromagnetic fields[J]. High Power Laser Science and Engineering, 2023, 11: e19. doi: 10.1017/hpl.2022.46
    [10]
    Quéré F, Thaury C, Monot P, et al. Coherent wake emission of high-order harmonics from overdense plasmas[J]. Physical Review Letters, 2006, 96: 125004. doi: 10.1103/PhysRevLett.96.125004
    [11]
    Baeva T, Gordienko S, Pukhov A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma[J]. Physical Review E, 2006, 74: 046404. doi: 10.1103/PhysRevE.74.046404
    [12]
    an der Brügge D, Pukhov A. Enhanced relativistic harmonics by electron nanobunching[J]. Physics of Plasmas, 2010, 17: 033110. doi: 10.1063/1.3353050
    [13]
    Bulanov S V, Naumova N M, Pegoraro F. Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma[J]. Physics of Plasmas, 1994, 1(3): 745-757. doi: 10.1063/1.870766
    [14]
    Lichters R, Meyer-ter-Vehn J, Pukhov A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity[J]. Physics of Plasmas, 1996, 3(9): 3425-3437. doi: 10.1063/1.871619
    [15]
    Gordienko S, Pukhov A, Shorokhov O, et al. Relativistic Doppler effect: Universal spectra and zeptosecond pulses[J]. Physical Review Letters, 2004, 93: 115002. doi: 10.1103/PhysRevLett.93.115002
    [16]
    Dromey B, Zepf M, Gopal A, et al. High harmonic generation in the relativistic limit[J]. Nature Physics, 2006, 2(7): 456-459. doi: 10.1038/nphys338
    [17]
    Dromey B, Kar S, Bellei C, et al. Bright Multi-keV harmonic generation from relativistically oscillating plasma surfaces[J]. Physical Review Letters, 2007, 99: 085001. doi: 10.1103/PhysRevLett.99.085001
    [18]
    Gonoskov A A, Korzhimanov A V, Kim A V, et al. Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[J]. Physical Review E, 2011, 84: 046403. doi: 10.1103/PhysRevE.84.046403
    [19]
    Mikhailova J M, Fedorov M V, Karpowicz N, et al. Isolated attosecond pulses from laser-driven synchrotron radiation[J]. Physical Review Letters, 2012, 109: 245005. doi: 10.1103/PhysRevLett.109.245005
    [20]
    Dromey B, Rykovanov S, Yeung M, et al. Coherent synchrotron emission from electron nanobunches formed in relativistic laser–plasma interactions[J]. Nature Physics, 2012, 8(11): 804-808. doi: 10.1038/nphys2439
    [21]
    Rubinsztein-Dunlop H, Forbes A, Berry M V, et al. Roadmap on structured light[J]. Journal of Optics, 2017, 19: 013001. doi: 10.1088/2040-8978/19/1/013001
    [22]
    Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nature Photonics, 2021, 15(4): 253-262. doi: 10.1038/s41566-021-00780-4
    [23]
    Harrison J, Naidoo D, Forbes A, et al. Progress in high-power and high-intensity structured light[J]. Advances in Physics: X, 2024, 9: 2327453. doi: 10.1080/23746149.2024.2327453
    [24]
    Piccardo M, Cernaianu M O, Palastro J P, et al. Trends in relativistic laser–matter interaction: the promises of structured light[J]. Optica, 2025, 12(6): 732-752. doi: 10.1364/OPTICA.558754
    [25]
    Chen Ziyu, Pukhov A. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror[J]. Nature Communications, 2016, 7: 12515. doi: 10.1038/ncomms12515
    [26]
    Ma Guangjin, Yu Wei, Yu M Y, et al. Intense circularly polarized attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses[J]. Optics Express, 2016, 24(9): 10057-10065. doi: 10.1364/OE.24.010057
    [27]
    Blanco M, Flores-Arias M T, Gonoskov A. Controlling the ellipticity of attosecond pulses produced by laser irradiation of overdense plasmas[J]. Physics of Plasmas, 2018, 25: 093114. doi: 10.1063/1.5044482
    [28]
    Jiang Yan, Wang Qing, Cao Lihua, et al. Enhancement of brightness of high-order harmonics with elliptical polarization from near-critical density plasmas irradiated by an ultraintense laser pulse[J]. Physics of Plasmas, 2020, 27: 083101. doi: 10.1063/1.5144587
    [29]
    Chen Ziyu, Li Xiaoya, Li Boyuan, et al. Isolated elliptically polarized attosecond soft X-ray with high-brilliance using polarization gating of harmonics from relativistic plasmas at oblique incidence[J]. Optics Express, 2018, 26(4): 4572-4580. doi: 10.1364/OE.26.004572
    [30]
    Chen Ziyu. Isolated attosecond pulse in the water window from many-cycle laser-driven plasma mirrors without pulse engineering[J]. Optics Letters, 2018, 43(9): 2114-2117. doi: 10.1364/OL.43.002114
    [31]
    Wang Jingwei, Bulanov S V, Chen Min, et al. Relativistic slingshot: A source for single circularly polarized attosecond x-ray pulses[J]. Physical Review E, 2020, 102: 061201. doi: 10.1103/PhysRevE.102.061201
    [32]
    Chen Minli, Xu Xinrong, Li Qianni, et al. Single attosecond pulse generation from a capacitor target irraidated by a circularly polarized laser[J]. Optics Express, 2025, 33(6): 12797-12808. doi: 10.1364/OE.555436
    [33]
    Chen Ziyu. Spectral control of high harmonics from relativistic plasmas using bicircular fields[J]. Physical Review E, 2018, 97: 043202. doi: 10.1103/PhysRevE.97.043202
    [34]
    Xie Duan, Yin Yan, Yu Tongpu, et al. High harmonic generation driven by two-color relativistic circularly polarized laser pulses at various frequency ratios[J]. Plasma Science and Technology, 2021, 23: 045502. doi: 10.1088/2058-6272/abe848
    [35]
    Li Qianni, Xu Xinrong, Wu Yanbo, et al. Generation of single circularly polarized attosecond pulses from near-critical density plasma irradiated by a two-color co-rotating circularly polarized laser[J]. Optics Express, 2022, 30(22): 40063-40074. doi: 10.1364/OE.472982
    [36]
    Zhong C L, Qiao B, Xu X R, et al. Intense circularly polarized attosecond pulse generation from solid targets irradiated with a two-color linearly polarized laser[J]. Physical Review A, 2020, 101: 053814. doi: 10.1103/PhysRevA.101.053814
    [37]
    Zhong Conglin, Qiao Bin, Zhang Yuxue, et al. Production of intense isolated attosecond pulses with circular polarization by using counter-propagating relativistic lasers[J]. New Journal of Physics, 2021, 23: 063080. doi: 10.1088/1367-2630/ac09c7
    [38]
    Zhong C L, Zhang Y, Li X B, et al. Emissions of brilliant attosecond pulse in circular polarization by using inclined lasers[J]. Physics of Plasmas, 2021, 28: 093105. doi: 10.1063/5.0057689
    [39]
    Zagidullin R, Zorina V, Wang J W, et al. Polarization control of attosecond pulses from laser-nanofoil interactions using an external magnetic field[J]. Physics of Plasmas, 2024, 31: 073303. doi: 10.1063/5.0213592
    [40]
    Pan Chenhao, Wang Jingwei, Luan Shixia, et al. Circularly polarized attosecond pulses generation from laser interaction with magnetized sub-critical plasmas[J]. Plasma Physics and Controlled Fusion, 2023, 65: 065006. doi: 10.1088/1361-6587/accd1b
    [41]
    Zaïm N, Guénot D, Chopineau L, et al. Interaction of ultraintense radially-polarized laser pulses with plasma mirrors[J]. Physical Review X, 2020, 10: 041064.
    [42]
    Chen Ziyu, Hu Ronghao. Intense high-order harmonic vector beams from relativistic plasma mirrors[J]. Physical Review A, 2021, 103: 023507. doi: 10.1103/PhysRevA.103.023507
    [43]
    Nye J F, Berry M V. Dislocations in wave trains[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1974, 336(1605): 165-190. doi: 10.1098/rspa.1974.0012
    [44]
    Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [45]
    Zhang Xiaomei, Shen Baifei, Shi Yin, et al. Generation of intense high-order vortex harmonics[J]. Physical Review Letters, 2015, 114: 173901. doi: 10.1103/PhysRevLett.114.173901
    [46]
    Li Shasha, Shen Baifei, Zhang Xiaomei, et al. Conservation of orbital angular momentum for high harmonic generation of fractional vortex beams[J]. Optics Express, 2018, 26(18): 23460-23470. doi: 10.1364/OE.26.023460
    [47]
    Xie Duan, Yin Yan, Yu Tongpu, et al. High-order vortex harmonics generation by bi-circular Laguerre-Gaussian laser fields with relativistic plasmas[J]. Frontiers in Physics, 2022, 10: 962956. doi: 10.3389/fphy.2022.962956
    [48]
    Wang J W, Zepf M, Rykovanov S G. Intense attosecond pulses carrying orbital angular momentum using laser plasma interactions[J]. Nature Communications, 2019, 10: 5554. doi: 10.1038/s41467-019-13357-1
    [49]
    Li Shasha, Zhang Xiaomei, Gong Weifeng, et al. Spin-to-orbital angular momentum conversion in harmonic generation driven by intense circularly polarized laser[J]. New Journal of Physics, 2020, 22: 013054. doi: 10.1088/1367-2630/ab6873
    [50]
    Yi Longqing. High-harmonic generation and spin-orbit interaction of light in a relativistic oscillating window[J]. Physical Review Letters, 2021, 126: 134801. doi: 10.1103/PhysRevLett.126.134801
    [51]
    Trines R, Schmitz H, King M, et al. Laser harmonic generation with independent control of frequency and orbital angular momentum[J]. Nature Communications, 2024, 15: 6878. doi: 10.1038/s41467-024-51311-y
    [52]
    Meng Yao, Li Runze, Yi Longqing. Relativistic oscillating window driven by an intense Laguerre-Gaussian laser pulse[J]. Physical Review Letters, 2025, 135: 165001. doi: 10.1103/tww5-w4fk
    [53]
    Fang Yiqi, Han Meng, Ge Peipei, et al. Photoelectronic mapping of the spin–orbit interaction of intense light fields[J]. Nature Photonics, 2021, 15(2): 115-120. doi: 10.1038/s41566-020-00709-3
    [54]
    Denoeud A, Chopineau L, Leblanc A, et al. Interaction of ultraintense laser vortices with plasma mirrors[J]. Physical Review Letters, 2017, 118: 033902. doi: 10.1103/PhysRevLett.118.033902
    [55]
    Leblanc A, Denoeud A, Chopineau L, et al. Plasma holograms for ultrahigh-intensity optics[J]. Nature Physics, 2017, 13(5): 440-443. doi: 10.1038/nphys4007
    [56]
    Bliokh K Y, Nori F. Spatiotemporal vortex beams and angular momentum[J]. Physical Review A, 2012, 86: 033824. doi: 10.1103/PhysRevA.86.033824
    [57]
    Jhajj N, Larkin I, Rosenthal E W, et al. Spatiotemporal optical vortices[J]. Physical Review X, 2016, 6: 031037.
    [58]
    Hancock S W, Zahedpour S, Goffin A, et al. Free-space propagation of spatiotemporal optical vortices[J]. Optica, 2019, 6(12): 1547-1553. doi: 10.1364/OPTICA.6.001547
    [59]
    Chong A, Wan Chenhao, Chen Jian, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 2020, 14(6): 350-354. doi: 10.1038/s41566-020-0587-z
    [60]
    Hancock S W, Zahedpour S, Milchberg H M. Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum[J]. Optica, 2021, 8(5): 594-597. doi: 10.1364/OPTICA.422743
    [61]
    Bliokh K Y. Spatiotemporal vortex pulses: Angular momenta and spin-orbit interaction[J]. Physical Review Letters, 2021, 126: 243601. doi: 10.1103/PhysRevLett.126.243601
    [62]
    Fang Yiqi, Lu Shengyue, Liu Yunquan. Controlling photon transverse orbital angular momentum in high harmonic generation[J]. Physical Review Letters, 2021, 127: 273901. doi: 10.1103/PhysRevLett.127.273901
    [63]
    Chen Ziyu, Hu Ronghao, Zhang Sen, et al. Relativistic high-order harmonic generation of spatiotemporal optical vortices[J]. Physical Review A, 2022, 106: 013516. doi: 10.1103/PhysRevA.106.013516
    [64]
    Zhang Lingang, Ji Liangliang, Shen Baifei. Intense harmonic generation driven by a relativistic spatiotemporal vortex beam[J]. High Power Laser Science and Engineering, 2022, 10: e46. doi: 10.1017/hpl.2022.38
    [65]
    Wu Yipeng, Nie Zan, Li Fei, et al. Efficient generation of intense spatial and spatiotemporal vortex harmonics using plasma mirrors[DB/OL]. arXiv preprint arXiv: 2311.13907, 2023.
    [66]
    Li Xiaofei, Zhang Xiaomei, Zheng Xiaolong, et al. Diverse spatiotemporal high harmonic generation[J]. New Journal of Physics, 2025, 27: 023008. doi: 10.1088/1367-2630/adaf4f
    [67]
    Hu Ke, Guo Xinju, Yi Longqing. High-harmonic generation and optical torque interaction via relativistic diffraction of a spatiotemporal vortex light[DB/OL]. arXiv preprint arXiv: 2505.03215, 2025.
    [68]
    Gori F, Guattari G, Padovani C. Bessel-Gauss beams[J]. Optics Communications, 1987, 64(6): 491-495. doi: 10.1016/0030-4018(87)90276-8
    [69]
    Durnin J, Miceli J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501. doi: 10.1103/PhysRevLett.58.1499
    [70]
    Aiello A, Agarwal G S. Wave-optics description of self-healing mechanism in Bessel beams[J]. Optics Letters, 2014, 39(24): 6819-6822. doi: 10.1364/OL.39.006819
    [71]
    Thériault G, Cottet M, Castonguay A, et al. Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging[J]. Frontiers in Cellular Neuroscience, 2014, 8: 139. doi: 10.3389/fncel.2014.00139
    [72]
    Zhao Shengmei, Zhang Wenhao, Wang Le, et al. Propagation and self-healing properties of Bessel-Gaussian beam carrying orbital angular momentum in an underwater environment[J]. Scientific Reports, 2019, 9: 2025. doi: 10.1038/s41598-018-38409-2
    [73]
    Pang Zeyue, Chen Peng, Chen Ziyu. Self-healing high-order harmonic generation from curved relativistic plasma mirrors with Bessel-Gaussian beams[J]. Physical Review A, 2024, 109: 043521. doi: 10.1103/PhysRevA.109.043521
    [74]
    Siviloglou G A, Broky J, Dogariu A, et al. Ballistic dynamics of Airy beams[J]. Optics Letters, 2008, 33(3): 207-209. doi: 10.1364/ol.33.000207
    [75]
    Berry M V, Balazs N L. Nonspreading wave packets[J]. American Journal of Physics, 1979, 47(3): 264-267. doi: 10.1119/1.18177
    [76]
    Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99: 213901. doi: 10.1103/PhysRevLett.99.213901
    [77]
    Chen Peng, Pang Zeyue, Chen Ziyu. Isolated attosecond pulses from Airy-beam-driven relativistic plasma mirrors[J]. Physical Review A, 2024, 109: 013522. doi: 10.1103/PhysRevA.109.013522
    [78]
    Shen Yijie, Zhang Qiang, Shi Peng, et al. Optical skyrmions and other topological quasiparticles of light[J]. Nature Photonics, 2024, 18(1): 15-25. doi: 10.1038/s41566-023-01325-7
    [79]
    Fang Yiqi, Liu Yunquan. Generation and control of extreme ultraviolet free-space optical skyrmions with high harmonic generation[J]. Advanced Photonics Nexus, 2023, 2: 046009. doi: 10.1117/1.apn.2.4.046009
    [80]
    Bauer T, Banzer P, Karimi E, et al. Observation of optical polarization Möbius strips[J]. Science, 2015, 347(6225): 964-966. doi: 10.1126/science.1260635
    [81]
    Luttmann M, Vimal M, Guer M, et al. Nonlinear up-conversion of a polarization Möbius strip with half-integer optical angular momentum[J]. Science Advances, 2023, 9: eadf3486. doi: 10.1126/sciadv.adf3486
    [82]
    Shen Yijie, Yu Bingshi, Wu Haijun, et al. Topological transformation and free-space transport of photonic hopfions[J]. Advanced Photonics, 2023, 5: 015001. doi: 10.1117/1.ap.5.1.015001
    [83]
    Lyu Zijian, Fang Yiqi, Liu Yunquan. Formation and controlling of optical hopfions in high harmonic generation[J]. Physical Review Letters, 2024, 133: 133801. doi: 10.1103/PhysRevLett.133.133801
    [84]
    Kfir O, Zayko S, Nolte C, et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation[J]. Science Advances, 2017, 3: eaao4641. doi: 10.1126/sciadv.aao4641
    [85]
    Sun Fengyu, Wang Wenpeng, Dong Hao, et al. Generation of isolated attosecond electron sheet via relativistic spatiotemporal optical manipulation[J]. Physical Review Research, 2024, 6: 013075. doi: 10.1103/PhysRevResearch.6.013075
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (17) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return