| Citation: | Long Xinxiang, Li Honglong, Zhang Yunxin, et al. Neutronics calculation for AP1000 based on the fission response function[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250378 |
| [1] |
Walters W J, Roskoff N J, Haghighat A. The RAPID fission matrix approach to reactor core criticality calculations[J]. Nuclear Science and Engineering, 2018, 192(1): 21-39. doi: 10.1080/00295639.2018.1497395
|
| [2] |
He Donghao, Walters W J. A new fission matrix correction method to estimate the source distribution in nuclear reactor core[C]//2018 International Conference on Physics of Reactors: Reactor Physics Paving the Way Towards More Efficient Systems. 2018: 2042-2053.
|
| [3] |
He Donghao, Walters W J. A local fission matrix correction method for heterogeneous whole core transport with RAPID[J]. Annals of Nuclear Energy, 2019, 134: 263-272. doi: 10.1016/j.anucene.2019.06.008
|
| [4] |
Al Hajj W, Haghighat A. A novel fission-matrix based radial boundary correction methodology and its implementation into the RAPID code system[J]. EPJ Web of Conferences, 2024, 302: 13010. doi: 10.1051/epjconf/202430213010
|
| [5] |
He Donghao, Zhang Tengfei, Liu Xiaojing. The application of the combined fission matrix theory in fast reactors[J]. Frontiers in Energy Research, 2021, 9: 766449. doi: 10.3389/fenrg.2021.766449
|
| [6] |
Leppänen J. Development of a new Monte Carlo reactor physics code[M]. Finland: VTT Technical Research Centre of Finland, 2007.
|
| [7] |
Leppänen J, Pusa M, Viitanen T, et al. The serpent Monte Carlo code: status, development and applications in 2013[J]. Annals of Nuclear Energy, 2015, 82: 142-150. doi: 10.1016/j.anucene.2014.08.024
|
| [8] |
Westinghouse Nuclear Power Electric Plants Company. AP1000 document cover sheet[R]. Pittsburgh: Westinghouse Nuclear Power Electric Plants Company, 2007.
|
| [9] |
Darnowski P, Ignaczak P, Orębski P, et al. Simulations of the AP1000-based reactor core with SERPENT computer code[J]. Archive of Mechanical Engineering, 2018, 65(3): 295-325.
|
| [10] |
Franceschini F, Godfrey A, Kulesza J, et al. Zero power physics test simulations for the AP1000® PWR[R]. CASL-U-2014-0012-001, 2014.
|
| [11] |
Roche P. The AP1000 nuclear reactor design[R]. 2016.
|
| [12] |
王一, 王瑞宏. 网格划分对裂变矩阵加速的影响[J]. 强激光与粒子束, 2017, 29: 126018 doi: 10.11884/HPLPB201729.170234
Wang Yi, Wang Ruihong. Effect of mesh division on the fission matrix acceleration method[J]. High Power Laser and Particle Beams, 2017, 29: 126018 doi: 10.11884/HPLPB201729.170234
|
| [13] |
Duderstadt J J, Hamilton L J. Nuclear reactor analysis[M]. New York: Wiley, 1976.
|
| [14] |
Vázquez-Rodríguez R, Espinosa-Paredes G, Morales-Sandoval J B, et al. Averaging the neutron diffusion equation[J]. Progress in Nuclear Energy, 2009, 51(3): 474-484. doi: 10.1016/j.pnucene.2008.10.007
|
| [15] |
Hua Guowei, Li Yunzhao, Wang Sicheng. PWR pin-homogenized cross-sections analysis using big-data technology[J]. Progress in Nuclear Energy, 2020, 121: 103228. doi: 10.1016/j.pnucene.2019.103228
|
| [16] |
Martínez L A, Hernández C R G, García J R, et al. Thermo-hydraulic simulation of AP1000 nuclear reactor fuel assembly[J]. VETOR-Revista de Ciências Exatas e Engenharias, 2021, 31(1): 60-71. doi: 10.14295/vetor.v31i1.13576
|