| Citation: | Zhou Yisong, Zhao Kai, Fu Changbo, et al. Light sources based on inverse Compton scattering: a review and perspectives[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250380 |
| [1] |
Compton A H. A general quantum theory of the wave-length of scattered X-rays[J]. Physical Review, 1924, 24(2): 168-176. doi: 10.1103/PhysRev.24.168
|
| [2] |
Compton A H. The spectrum of scattered X-rays[J]. Physical Review, 1923, 22(5): 409-413. doi: 10.1103/PhysRev.22.409
|
| [3] |
Arons A B, Peppard M B. Einstein’s proposal of the photon concept—a translation of the annalen der physik paper of 1905[J]. American Journal of Physics, 1965, 33(5): 367-374. doi: 10.1119/1.1971542
|
| [4] |
Henriksen E K, Angell C, Vistnes A I, et al. What is light? Students’ reflections on the wave-particle duality of light and the nature of physics[J]. Science & Education, 2018, 27(1/2): 81-111.
|
| [5] |
HENDRY J. The development of attitudes to the wave-particle duality of light and quantum theory, 1900–1920[J]. Annals of science, 1980, 37(1): 59-79. doi: 10.1080/00033798000200121
|
| [6] |
Dimitrova T L, Weis A. The wave-particle duality of light: a demonstration experiment[J]. American Journal of Physics, 2008, 76(2): 137-142. doi: 10.1119/1.2815364
|
| [7] |
Evans R D. Compton effect[M]//Flügge S. Corpuscles and Radiation in Matter II/Korpuskeln und Strahlung in Materie II. Berlin: Springer, 1958: 218-298.
|
| [8] |
Jones F C. Calculated spectrum of inverse-compton-scattered photons[J]. Physical Review, 1968, 167(5): 1159-1169. doi: 10.1103/PhysRev.167.1159
|
| [9] |
Jones F C. Inverse Compton scattering of cosmic-ray electrons[J]. Physical Review, 1965, 137(5B): B1306-B1311. doi: 10.1103/PhysRev.137.B1306
|
| [10] |
Blumenthal G R, Gould R J. Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases[J]. Reviews of Modern Physics, 1970, 42(2): 237-270. doi: 10.1103/RevModPhys.42.237
|
| [11] |
Boucher S, Frigola P, Murokh A, et al. Inverse compton scattering gamma ray source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 608(Suppl 1): S54-S56.
|
| [12] |
Graves W S, Bessuille J, Brown P, et al. Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz[J]. Physical Review Special Topics-Accelerators and Beams, 2014, 17: 120701. doi: 10.1103/PhysRevSTAB.17.120701
|
| [13] |
Chen Shouyuan, Powers N D, Ghebregziabher I, et al. MeV-energy X rays from inverse Compton scattering with laser-wakefield accelerated electrons[J]. Physical Review Letters, 2013, 110: 155003. doi: 10.1103/PhysRevLett.110.155003
|
| [14] |
Faillace L, Agostino R G, Bacci A, et al. Status of compact inverse Compton sources in Italy: BriXS and STAR[C]//Proceedings of SPIE 11110, Advances in Laboratory-based X-Ray Sources, Optics, and Applications VII. 2019: 1111005.
|
| [15] |
Borysova M. Studies of high-field QED with the LUXE experiment at the European XFEL[J]. Journal of Instrumentation, 2021, 16: C12030. doi: 10.1088/1748-0221/16/12/C12030
|
| [16] |
Huang Juanjuan, Günther B, Achterhold K, et al. Energy-dispersive X-ray absorption spectroscopy with an inverse Compton source[J]. Scientific Reports, 2020, 10(1): 8772. doi: 10.1038/s41598-020-65225-4
|
| [17] |
Muramatsu N, Kon Y, Daté S, et al. Development of high intensity laser-electron photon beams up to 2.9 GeV at the SPring-8 LEPS beamline[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 737: 184-194. doi: 10.1016/j.nima.2013.11.039
|
| [18] |
Wang Hongwei, Fang Gongtao, Shen Wenqing, et al. SLEGS: the first photonuclear reaction research platform in China[J]. Nuclear Physics News, 2023, 33(4): 17-22. doi: 10.1080/10619127.2023.2230858
|
| [19] |
Xu Hanghua, Fan G T, Wang Hongwei, et al. Interaction chamber for laser Compton slant-scattering in SLEGS beamline at Shanghai Light Source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1033: 166742. doi: 10.1016/j.nima.2022.166742
|
| [20] |
Liu Longxiang, Wang Hongwei, Fan Gongtao, et al. The SLEGS beamline of SSRF[J]. Nuclear Science and Techniques, 2024, 35(7): 111. doi: 10.1007/s41365-024-01469-3
|
| [21] |
Saldin E L, Schneidmiller E V, Yurkov M V. The physics of free electron lasers[M]. Berlin: Springer, 2012.
|
| [22] |
Fisher A, Park Y, Lenz M, et al. Single-pass high-efficiency terahertz free-electron laser[J]. Nature Photonics, 2022, 16(6): 441-447. doi: 10.1038/s41566-022-00995-z
|
| [23] |
Mcneil B W J, Thompson N R. X-ray free-electron lasers[J]. Nature Photonics, 2010, 4(12): 814-821. doi: 10.1038/nphoton.2010.239
|
| [24] |
O’Shea P G, Freund H P. Free-electron lasers: status and applications[J]. Science, 2001, 292(5523): 1853-1858. doi: 10.1126/science.1055718
|
| [25] |
Galayda J N. The LCLS-II: a high power upgrade to the LCLS[C]//9th International Particle Accelerator Conference. 2018: 18-23.
|
| [26] |
Cooper M, Mijnarends P, Shiotani N, et al. X-ray Compton scattering[M]. Oxford: Oxford University Press, 2004.
|
| [27] |
Kulpe S, Dierolf M, Günther B, et al. Spectroscopic imaging at compact inverse Compton X-ray sources[J]. Physica Medica, 2020, 79: 137-144. doi: 10.1016/j.ejmp.2020.11.015
|
| [28] |
Ma Yue, Liu Dexiang, Hua Jianfei, et al. Dual-energy micro-focus computed tomography based on the energy-angle correlation of inverse Compton scattering source[J]. Journal of X-Ray Science and Technology, 2023, 31(6): 1227-1243. doi: 10.3233/xst-230093
|
| [29] |
Wu Huangkai, Wang Xiyang, Wang Yumiao, et al. Fudan multi-purpose active target time projection chamber (fMeta-TPC) for photonuclear reaction experiments[J]. Nuclear Science and Techniques, 2024, 35: 200. doi: 10.1007/s41365-024-01576-1
|
| [30] |
Krämer J M, Jochmann A, Budde M, et al. Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications[J]. Scientific Reports, 2018, 8: 1398. doi: 10.1038/s41598-018-19546-0
|
| [31] |
Brümmer T, Bohlen S, Grüner F, et al. Compact all-optical precision-tunable narrowband hard Compton X-ray source[J]. Scientific Reports, 2022, 12: 16017. doi: 10.1038/s41598-022-20283-8
|
| [32] |
Gu Yuning, Zhao Weijuan, Cao Xiguang, et al. Feasibility study of the photonuclear reaction cross section of medical radioisotopes using a laser Compton scattering gamma source[J]. Nuclear Science and Techniques, 2024, 35(9): 155. doi: 10.1007/s41365-024-01481-7
|
| [33] |
Wang Hongwei, Fan Gongtao, Liu Longxiang, et al. Commissioning of laser electron gamma beamline SLEGS at SSRF[J]. Nuclear Science and Techniques, 2022, 33: 87. doi: 10.1007/s41365-022-01076-0
|
| [34] |
Günther B, Gradl R, Jud C, et al. The versatile X-ray beamline of the Munich Compact Light Source: design, instrumentation and applications[J]. Journal of Synchrotron Radiation, 2020, 27(5): 1395-1414. doi: 10.1107/S1600577520008309
|
| [35] |
MESSIAH A. Quantum mechanics[M]. Mineola, New York: Dover Publications, 2014.
|
| [36] |
Joannopoulos J D, Villeneuve P R, Fan Shanhui. Photonic crystals[J]. Solid State Communications, 1997, 102(2/3): 165-173.
|
| [37] |
Deng Xiujie, Chao A, Feikes J, et al. Experimental demonstration of the mechanism of steady-state microbunching[J]. Nature, 2021, 590(7847): 576-579. doi: 10.1038/s41586-021-03203-0
|
| [38] |
Jackson J D. Classical electrodynamics[M]. 3rd ed. New York: Wiley, 1998.
|
| [39] |
Luccio A, Matone G, Miceli L, et al. Coherent backscattering in the soft X-ray region[J]. Laser and Particle Beams, 1990, 8(3): 383-398. doi: 10.1017/S0263034600008636
|
| [40] |
Luccio A, Miceli L. Coherent compton x-ray sources[J]. Journal of X-Ray Science and Technology, 1994, 4(4): 247-262. doi: 10.1016/s0895-3996(05)80043-6
|
| [41] |
Giordano G, Matone G, Luccio A, et al. Coherence in Compton scattering at large angles[J]. Laser and Particle Beams, 1997, 15(1): 167-177. doi: 10.1017/S0263034600010867
|
| [42] |
Zhao Kai, Fu Changbo, Kong Xiangjin, et al. Coherent Compton scattering using a stretched off-axis paraboloid[J]. Nuclear Science and Techniques, 2025, 36: 156. doi: 10.1007/s41365-025-01755-8
|
| [43] |
Kunzl T, Lesch H, Jessner A. On beaming due to coherent inverse Compton scattering[DB/OL]. arXiv preprint arXiv: astro-ph/9808114, 1998.
|
| [44] |
Zhang Bing. Coherent inverse Compton scattering by bunches in fast radio bursts[J]. The Astrophysical Journal, 2022, 925: 53. doi: 10.3847/1538-4357/ac3979
|
| [45] |
Qu Yuanhong, Zhang Bing. Coherent inverse Compton scattering in fast radio bursts revisited[J]. The Astrophysical Journal, 2024, 972: 124. doi: 10.3847/1538-4357/ad5d5b
|
| [46] |
Kapitza P L, Dirac P A M. The reflection of electrons from standing light waves[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1933, 29(2): 297-300. doi: 10.1016/b978-0-08-010744-8.50036-1
|
| [47] |
Palastro J P, Shaw J L, Franke P, et al. Dephasingless laser wakefield acceleration[J]. Physical Review Letters, 2020, 124: 134802. doi: 10.1103/PhysRevLett.124.134802
|
| [48] |
Froula D H, Turnbull D, Davies A S, et al. Spatiotemporal control of laser intensity[J]. Nature Photonics, 2018, 12(5): 262-265. doi: 10.1038/s41566-018-0121-8
|
| [49] |
Howard A J, Turnbull D, Davies A S, et al. Photon acceleration in a flying focus[J]. Physical Review Letters, 2019, 123: 124801. doi: 10.1103/PhysRevLett.123.124801
|
| [50] |
Ramsey D, Malaca B, Simpson T T, et al. X-ray free-electron lasing in a flying-focus undulator[J]. Communications Physics, 2025, 8: 113. doi: 10.1038/s42005-025-02028-x
|
| [51] |
Pigeon J J, Franke P, Lim Pac Chong M, et al. Ultrabroadband flying-focus using an axiparabola-echelon pair[J]. Optics Express, 2024, 32(1): 576-585. doi: 10.1364/OE.506112
|
| [52] |
PALASTRO J, TURNBULL D, BAHK S W, 等. Ionization waves of arbitrary velocity driven by a flying focus[J]. Physical Review A, 2018, 97(3): 033835.
|
| [53] |
Turnbull D, Bahk S W, Begishev I A, et al. Flying focus and its application to plasma-based laser amplifiers[J]. Plasma Physics and Controlled Fusion, 2019, 61: 014022. doi: 10.1088/1361-6587/aada63
|
| [54] |
Jolly S W, Gobert O, Jeandet A, et al. Controlling the velocity of a femtosecond laser pulse using refractive lenses[J]. Optics Express, 2020, 28(4): 4888-4897. doi: 10.1364/OE.384512
|
| [55] |
Lugovoi V N, Manenkov A A. Multi-focus structure and moving nonlinear foci: adequate models of self-focusing of laser beams in nonlinear media[M]//Boyd R W, Lukishova S G, Shen Y R. Self-focusing: Past and Present: Fundamentals and Prospects. New York: Springer, 2009: 145-155.
|
| [56] |
Mansuryan T, Bagley N, Boulesteix R, et al. Nonlinear flying focus pulses for ultrafast 3D nonlinear microscopy[J]. Optica, 2025, 12(8): 1192-1199. doi: 10.1364/OPTICA.561661
|
| [57] |
Bagley N, Wehbi S, Mansuryan T, et al. Concatenation of Kerr solitary waves in ceramic YAG: application to coherent Raman imaging[J]. Optics Letters, 2025, 50(2): 427-430. doi: 10.1364/OL.543232
|
| [58] |
Ghasemi A, Mirzanejhad S, Mohsenpour T. Flying focus laser wake field acceleration by donut shape pulse[J]. Applied Physics B, 2024, 130: 105. doi: 10.1007/s00340-024-08236-7
|
| [59] |
Jiang Xiaoming, Tang Esheng, Xian Dingchang. Beijing synchrotron radiation facility[J]. Review of Scientific Instruments, 1995, 66(2): 2343-2348. doi: 10.1063/1.1145684
|
| [60] |
Jiang Mianheng, Yang Xiong, Xu Hongjie, et al. Shanghai synchrotron radiation facility[J]. Chinese Science Bulletin, 2009, 54(22): 4171-4181. doi: 10.1007/s11434-009-0689-y
|
| [61] |
Rosenzweig J B. Fundamentals of beam physics[M]. Oxford: Oxford University Press, 2003.
|
| [62] |
Chao A W, Tigner M, Weise H, et al. Handbook of accelerator physics and engineering[M]. 3rd ed. Hackensack: World Scientific, 2023: 1-64.
|
| [63] |
Ratner D F, Chao A W. Steady-state microbunching in a storage ring for generating coherent radiation[J]. Physical Review Letters, 2010, 105: 154801. doi: 10.1103/PhysRevLett.105.154801
|
| [64] |
Khan S. Ultrashort high-brightness pulses from storage rings[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 865: 95-98. doi: 10.1016/j.nima.2016.07.048
|
| [65] |
Tang Chuanxiang, Deng Xiujie, Huang Wenhui, et al. An overview of the progress on SSMB[C]//60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources. 2018: 166-170.
|
| [66] |
Kruschinski A, Deng Xiujie, Feikes J, et al. Confirming the theoretical foundation of steady-state microbunching[J]. Communications Physics, 2024, 7: 160. doi: 10.1038/s42005-024-01657-y
|
| [67] |
Gilmour A S Jr. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons[M]. Boston: Artech House, 2011.
|
| [68] |
Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
|
| [69] |
He H, Friese M E J, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Physical Review Letters, 1995, 75(5): 826-829. doi: 10.1103/PhysRevLett.75.826
|
| [70] |
Lax M, Louisell W H, Mcknight W B. From Maxwell to paraxial wave optics[J]. Physical Review A, 1975, 11(4): 1365-1370. doi: 10.1103/physreva.11.1365
|
| [71] |
Molnár E, Stutman D. Direct laser-driven electron acceleration and energy gain in helical beams[J]. Laser and Particle Beams, 2021, 2021: e11. doi: 10.1155/2021/6645668
|
| [72] |
Chen Yueyue, Hatsagortsyan K Z, Keitel C H. Generation of twisted γ-ray radiation by nonlinear Thomson scattering of twisted light[J]. Matter and Radiation at Extremes, 2019, 4: 024401. doi: 10.1063/1.5086347
|
| [73] |
Pae K H, Song H, Ryu C M, et al. Low-divergence relativistic proton jet from a thin solid target driven by an ultra-intense circularly polarized Laguerre–Gaussian laser pulse[J]. Plasma Physics and Controlled Fusion, 2020, 62: 055009. doi: 10.1088/1361-6587/ab7d27
|
| [74] |
Fu Shiyao, Gao Chunqing. Basic characteristics of vortex beams[M]//Fu Shiyao, Gao Chunqing. Optical Vortex Beams: Fundamentals and Techniques. Singapore: Springer, 2023: 41-62.
|
| [75] |
Barros R F, Bej S, Hiekkamäki M, et al. Observation of the topological aberrations of twisted light[J]. Nature Communications, 2024, 15: 8162. doi: 10.1038/s41467-024-52529-6
|
| [76] |
Nye J F, Berry M V. Dislocations in wave trains[J]. Royal Society of London. A. Mathematical and Physical Sciences, 1974, 336(1605): 165-190. doi: 10.1098/rspa.1974.0012
|
| [77] |
Berry M V. Optical vortices evolving from helicoidal integer and fractional phase steps[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6: 259. doi: 10.1088/1464-4258/6/2/018
|
| [78] |
Birdsall C K, Langdon A B. Plasma physics via computer simulation[M]. Boca Raton: CRC Press, 2018.
|
| [79] |
Yu L H, Babzien M, Ben-Zvi I, et al. High-gain harmonic-generation free-electron laser[J]. Science, 2000, 289(5481): 932-934. doi: 10.1126/science.289.5481.932
|
| [80] |
Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4(9): 641-647. doi: 10.1038/nphoton.2010.176
|
| [81] |
Wang Wentao, Feng Ke, Ke Lintong, et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 2021, 595(7868): 516-520. doi: 10.1038/s41586-021-03678-x
|
| [82] |
Franz P, Li Siqi, Driver T, et al. Terawatt-scale attosecond X-ray pulses from a cascaded superradiant free-electron laser[J]. Nature Photonics, 2024, 18(7): 698-703. doi: 10.1038/s41566-024-01427-w
|
| [83] |
Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 2012, 6(10): 699-704. doi: 10.1038/nphoton.2012.233
|
| [84] |
White W E, Robert A, Dunne M. The Linac Coherent Light Source[J]. Journal of Synchrotron Radiation, 2015, 22(3): 472-476. doi: 10.1107/S1600577515005196
|
| [85] |
Decking W, Abeghyan S, Abramian P, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator[J]. Nature Photonics, 2020, 14(6): 391-397. doi: 10.1038/s41566-020-0607-z
|
| [86] |
Liu Tao, Huang Nanshun, Yang Hanxiang, et al. Status and future of the soft X-ray free-electron laser beamline at the SHINE[J]. Frontiers in Physics, 2023, 11: 1172368. doi: 10.3389/fphy.2023.1172368
|
| [87] |
Coquelle N, Sliwa M, Woodhouse J, et al. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography[J]. Nature Chemistry, 2018, 10(1): 31-37. doi: 10.1038/nchem.2853
|
| [88] |
Mara M W, Hadt R G, Reinhard M E, et al. Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast x-ray spectroscopy[J]. Science, 2017, 356(6344): 1276-1280. doi: 10.1126/science.aam6203
|
| [89] |
Milathianaki D, Boutet S, Williams G J, et al. Femtosecond visualization of lattice dynamics in shock-compressed matter[J]. Science, 2013, 342(6155): 220-223. doi: 10.1126/science.1239566
|
| [90] |
Wang Xiaofan, Feng Chao, Faatz B, et al. High-repetition-rate seeded free-electron laser with direct-amplification of an external coherent laser[J]. New Journal of Physics, 2022, 24: 033013. doi: 10.1088/1367-2630/ac5492
|
| [91] |
Deng Haixiao, Zhang Tong, Feng Lie, et al. Polarization switching demonstration using crossed-planar undulators in a seeded free-electron laser[J]. Physical Review Accelerators and Beams, 2014, 17: 020704. doi: 10.1103/PhysRevSTAB.17.020704
|
| [92] |
Colson W B, Sessler A M. Free electron lasers[J]. Annual Reviews of Nuclear and Particle Science, 1985, 35: 25. doi: 10.1146/annurev.ns.35.120185.000325
|
| [93] |
Bonifacio R, Pellegrini C, Narducci L M. Collective instabilities and high-gain regime in a free electron laser[J]. Optics Communications, 1984, 50(6): 373-378. doi: 10.1016/0030-4018(84)90105-6
|
| [94] |
Huang Zhirong, Kim K J. Review of x-ray free-electron laser theory[J]. Physical Review Special Topics - Accelerators and Beams, 2007, 10: 034801. doi: 10.1103/PhysRevSTAB.10.034801
|