Turn off MathJax
Article Contents
Li Yifei, Wang Jinguang, Lu Xin, et al. Femtosecond laser-driven ultrafast X-ray dynamics experimental station[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250382
Citation: Li Yifei, Wang Jinguang, Lu Xin, et al. Femtosecond laser-driven ultrafast X-ray dynamics experimental station[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250382

Femtosecond laser-driven ultrafast X-ray dynamics experimental station

doi: 10.11884/HPLPB202638.250382
  • Received Date: 2025-10-31
  • Accepted Date: 2025-12-15
  • Rev Recd Date: 2025-12-17
  • Available Online: 2026-01-06
  • Background
    Ultrashort and ultraintense laser-driven plasma X-ray sources offer femtosecond pulse durations, intrinsic spatiotemporal synchronization, compactness, and cost-effectiveness, serving as an important complement to traditional large-scale light sources and providing novel experimental tools for ultrafast dynamics research.
    Purpose
    Built upon the Synthetic Extreme Condition Facility (SECUF), the first open-access user experimental station in China based on high-power femtosecond lasers was established to deliver various types of ultrafast radiation sources, supporting studies on ultrafast material dynamics and frontier strong-field physics.
    Methods
    The station is equipped with a dual-beam titanium-sapphire laser system (3 TW/100 Hz and PW/1 shot/min) and multiple beamlines with multifunctional target chambers. Through interactions between the laser and solid targets, gas targets, or plasmas, various ultrafast light sources—such as Kα X-rays, Betatron radiation, and inverse Compton scattering—are generated. Platforms for strong-field terahertz pump–X-ray probe (TPXP) experiments and tabletop epithermal neutron resonance spectroscopy have also been developed.
    Results
    A highly stable ultrafast X-ray diffraction and TPXP platform was successfully established, enabling direct observation of strong-field terahertz-induced phase transition in VO2. The world’s first tabletop high-resolution epithermal neutron resonance spectroscopy device was developed. On the PW beamline, hundred-millijoule-level intense terahertz radiation, efficient inverse Compton scattering, and high-charge electron beams were achieved.
    Conclusions
    Integrating high-performance lasers, diverse radiation sources, and advanced diagnostic platforms, this experimental station provides a flexible and efficient comprehensive facility for ultrafast science, promising to advance ultrafast dynamics research toward broader accessibility and more cutting-edge directions.
  • loading
  • [1]
    Rastogi V, Smith R F, Sims M, et al. Application of ultrafast x-ray lasers in studying the material structure under shock compression[J]. Journal of Applied Physics, 2025, 137: 070702. doi: 10.1063/5.0239330
    [2]
    Li Yutong, Chen Liming, Chen Min, et al. High-intensity lasers and research activities in China[J]. High Power Laser Science and Engineering, 2025, 13: e12. doi: 10.1017/hpl.2024.69
    [3]
    Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
    [4]
    Albert F. Principles and applications of x-ray light sources driven by laser wakefield acceleration[J]. Physics of Plasmas, 2023, 30: 050902. doi: 10.1063/5.0142033
    [5]
    Rathore R, Singhal H, Kulkarni R, et al. Development of ultrashort intense broadband laser-plasma x-ray source for ultrafast Laue x-ray diffraction[J]. Review of Scientific Instruments, 2025, 96: 074902. doi: 10.1063/5.0250567
    [6]
    中国科学院物理研究所. 飞秒激光驱动的定向超快X射线分幅成像装置及应用: 201910841360.7[P]. 2019-11-15

    Institute of Physics, Chinese Academy of Sciences. Directional ultrafast X-ray separation imaging device driven by femtosecond laser and application: 201910841360.7[P]. 2019-11-15
    [7]
    Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [8]
    Picksley A, Stackhouse J, Benedetti C, et al. Matched guiding and controlled injection in dark-current-free, 10-GeV-class, channel-guided laser-plasma accelerators[J]. Physical Review Letters, 2024, 133: 255001. doi: 10.1103/PhysRevLett.133.255001
    [9]
    Ziegler T, Göthel I, Assenbaum S, et al. Laser-driven high-energy proton beams from cascaded acceleration regimes[J]. Nature Physics, 2024, 20(7): 1211-1216. doi: 10.1038/s41567-024-02505-0
    [10]
    Liao Guoqian, Liu Hao, Scott G G, et al. Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laser-foil interactions[J]. Physical Review X, 2020, 10: 031062. doi: 10.1103/physrevx.10.031062
    [11]
    Zhang Xiaobo, Weng Suming, Ai Hong, et al. Photonic Rabi oscillations in defective plasma photonic crystals[J]. Physical Review Letters, 2025, 135: 015101. doi: 10.1103/k2th-m73q
    [12]
    Feng Jie, Wang Wenzhao, Fu Changbo, et al. Femtosecond pumping of nuclear isomeric states by the coulomb collision of ions with quivering electrons[J]. Physical Review Letters, 2022, 128: 052501. doi: 10.1103/PhysRevLett.128.052501
    [13]
    Feng Jie, Qi Jintao, Zhang Hanxu, et al. Laser-based approach to measure small nuclear cross sections in plasma[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121: e2413221121. doi: 10.1073/pnas.2413221121
    [14]
    Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
    [15]
    Winkler P, Trunk M, Hübner L, et al. Active energy compression of a laser-plasma electron beam[J]. Nature, 2025, 640(8060): 907-910. doi: 10.1038/s41586-025-08772-y
    [16]
    Barber S K, Kohrell F, Doss C E, et al. Greater than 1000-fold gain in a free-electron laser driven by a laser-plasma accelerator with high reliability[J]. Physical Review Letters, 2025, 135: 055001. doi: 10.1103/vh62-gz1p
    [17]
    Hao Chen X-Y Z, Guo-Qian Liao, et al. All-optical table-top strong-field terahertz pump – ultrafast X-ray probe platform[J]. Review of Scientific Instruments, (accepted)..
    [18]
    Feng Jie, Ren Jie, Xu Hao, et al. Proof-of-principle demonstration of epithermal neutron resonance spectroscopy utilizing a compact laser-driven electron accelerator[J]. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122: e2518397122. doi: 10.1073/pnas.2518397122
    [19]
    Chen Hao, Liao Guoqian, Wu Hongyuan, et al. Optimized terahertz generation in BNA organic crystals with chirped Ti: sapphire laser pulses[J]. Optics Letters, 2024, 49(18): 5047-5050. doi: 10.1364/OL.533146
    [20]
    Lu W, Nicoul M, Shymanovich U, et al. A modular table-top setup for ultrafast x-ray diffraction[J]. Review of Scientific Instruments, 2024, 95: 013002. doi: 10.1063/5.0181132
    [21]
    Claude R, Puppin M, Weaver B, et al. Shot-to-shot acquisition ultrafast electron diffraction[DB/OL]. arXiv preprint arXiv: 2502.02540, 2025.
    [22]
    Hao Xu J F, Zhu Mingyang, Shi Bingzhan, et al. Experimental demonstration of fast neutron absorption spectroscopy with laser-driven neutron source[J]. (under review)..
    [23]
    雷弘毅, 孙方正, 陈浩, 等. 强场太赫兹脉冲波形和频谱的单发测量技术[J]. 中国激光, 2023, 50: 1714001 doi: 10.3788/CJL230790

    Lei Hongyi, Sun Fangzheng, Chen Hao, et al. Single-shot waveform and spectrum measurement techniques for strong field terahertz pulses[J]. Chinese Journal of Lasers, 2023, 50: 1714001 doi: 10.3788/CJL230790
    [24]
    Ruan J Y, Zhang X Y, Liao G Q, et al. Terawatt-level widely-tunable terahertz bursts from femtosecond laser-irradiated metallic foils[J]. (under review)..
    [25]
    Zhu Changqing, Wang Jinguang, Feng Jie, et al. Inverse Compton scattering x-ray source from laser electron accelerator in pure nitrogen with 15 TW laser pulses[J]. Plasma Physics and Controlled Fusion, 2019, 61: 024001. doi: 10.1088/1361-6587/aaebe3
    [26]
    Chen Siyu, Yan Wenchao, Zhu Mingyang, et al. A platform for all-optical Thomson/Compton scattering with versatile parameters[J]. High Power Laser Science and Engineering, 2025, 13: e56. doi: 10.1017/hpl.2025.36
    [27]
    Hu Xichen, Zhu Mingyang, Xie Pengpei, et al. Enhanced inverse Compton scattering via spontaneous focusing induced by coated plasma mirror[J]. (under review)..
    [28]
    Mirzaie M, Hojbota C I, Kim D Y, et al. All-optical nonlinear Compton scattering performed with a multi-petawatt laser[J]. Nature Photonics, 2024, 18(11): 1212-1217. doi: 10.1038/s41566-024-01550-8
    [29]
    Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Physics and Controlled Fusion, 2016, 58: 103001. doi: 10.1088/0741-3335/58/10/103001
    [30]
    Senthilkumaran V, Beier N F, Fourmaux S, et al. Laser-driven betatron x rays for high-throughput imaging of additively manufactured materials[J]. Rev Sci Instrum, 2024, 95: 123510. doi: 10.1063/5.0221606
    [31]
    Gruse J N, Streeter M J V, Thornton C, et al. Application of compact laser-driven accelerator X-ray sources for industrial imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 983: 164369. doi: 10.1016/j.nima.2020.164369
    [32]
    Cole J M, Symes D R, Lopes N C, et al. High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6335-6340.
    [33]
    Hussein A E, Senabulya N, Ma Y, et al. Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures[J]. Scientific Reports, 2019, 9: 3249. doi: 10.1038/s41598-019-39845-4
    [34]
    Balcazar M D, Tsai H E, Ostermayr T M, et al. Multi-messenger dynamic imaging of laser-driven shocks in water using a plasma wakefield accelerator[J]. Nature Communications, 2025.
    [35]
    Kettle B, Colgan C, Los E E, et al. Extended X-ray absorption spectroscopy using an ultrashort pulse laboratory-scale laser-plasma accelerator[J]. Communications Physics, 2024, 7: 247. doi: 10.1038/s42005-024-01735-1
    [36]
    Huang K, Li Y F, Li D Z, et al. Resonantly enhanced betatron hard X-rays from ionization injected electrons in a laser plasma accelerator[J]. Scientific Reports, 2016, 6: 27633. doi: 10.1038/srep27633
    [37]
    Tan J H, Li Y F, Li D Z, et al. Observation of high efficiency Betatron radiation from femtosecond petawatt laser irradiated near critical plasmas[DB/OL]. arXiv preprint arXiv: 2109.12467, 2021.
    [38]
    Shou Yinren, Wang Pengjie, Lee S G, et al. Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma[J]. Nature Photonics, 2023, 17(2): 137-142. doi: 10.1038/s41566-022-01114-8
    [39]
    Hu Xichen, Zhu Mingyang, Li Yifei, et al. Hundreds of nanocoulomb electron acceleration driven by multipetawatt laser in subcritical density plasmas[J]. Advanced Photonics Research, 2025, 6: 2500056. doi: 10.1002/adpr.202500056
    [40]
    Chen Liming, Feng Jie, Yan Wenchao, et al. Ultra-high charge electron acceleration for nuclear applications[J]. Fundamental Plasma Physics, 2024, 12: 100071. doi: 10.1016/j.fpp.2024.100071
    [41]
    Nakanii N, Huang K, Kondo K, et al. Precise pointing control of high-energy electron beam from laser wakefield acceleration using an aperture[J]. Applied Physics Express, 2023, 16: 026001. doi: 10.35848/1882-0786/acb892
    [42]
    Shalloo R J, Dann S J D, Gruse J N, et al. Automation and control of laser wakefield accelerators using Bayesian optimization[J]. Nature Communications, 2020, 11: 6355. doi: 10.1038/s41467-020-20245-6
    [43]
    Zhai H T, Zhu M Y, Hu X C, et al. Efficient generation of hundred nano-coulomb electron beam via hybrid plasma wakefield acceleration[J]. High Power Laser Science and Engineering (accepted)..
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (50) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return