| Citation: | Li Yifei, Wang Jinguang, Lu Xin, et al. Femtosecond laser-driven ultrafast X-ray dynamics experimental station[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250382 |
| [1] |
Rastogi V, Smith R F, Sims M, et al. Application of ultrafast x-ray lasers in studying the material structure under shock compression[J]. Journal of Applied Physics, 2025, 137: 070702. doi: 10.1063/5.0239330
|
| [2] |
Li Yutong, Chen Liming, Chen Min, et al. High-intensity lasers and research activities in China[J]. High Power Laser Science and Engineering, 2025, 13: e12. doi: 10.1017/hpl.2024.69
|
| [3] |
Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
|
| [4] |
Albert F. Principles and applications of x-ray light sources driven by laser wakefield acceleration[J]. Physics of Plasmas, 2023, 30: 050902. doi: 10.1063/5.0142033
|
| [5] |
Rathore R, Singhal H, Kulkarni R, et al. Development of ultrashort intense broadband laser-plasma x-ray source for ultrafast Laue x-ray diffraction[J]. Review of Scientific Instruments, 2025, 96: 074902. doi: 10.1063/5.0250567
|
| [6] |
中国科学院物理研究所. 飞秒激光驱动的定向超快X射线分幅成像装置及应用: 201910841360.7[P]. 2019-11-15
Institute of Physics, Chinese Academy of Sciences. Directional ultrafast X-ray separation imaging device driven by femtosecond laser and application: 201910841360.7[P]. 2019-11-15
|
| [7] |
Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
|
| [8] |
Picksley A, Stackhouse J, Benedetti C, et al. Matched guiding and controlled injection in dark-current-free, 10-GeV-class, channel-guided laser-plasma accelerators[J]. Physical Review Letters, 2024, 133: 255001. doi: 10.1103/PhysRevLett.133.255001
|
| [9] |
Ziegler T, Göthel I, Assenbaum S, et al. Laser-driven high-energy proton beams from cascaded acceleration regimes[J]. Nature Physics, 2024, 20(7): 1211-1216. doi: 10.1038/s41567-024-02505-0
|
| [10] |
Liao Guoqian, Liu Hao, Scott G G, et al. Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laser-foil interactions[J]. Physical Review X, 2020, 10: 031062. doi: 10.1103/physrevx.10.031062
|
| [11] |
Zhang Xiaobo, Weng Suming, Ai Hong, et al. Photonic Rabi oscillations in defective plasma photonic crystals[J]. Physical Review Letters, 2025, 135: 015101. doi: 10.1103/k2th-m73q
|
| [12] |
Feng Jie, Wang Wenzhao, Fu Changbo, et al. Femtosecond pumping of nuclear isomeric states by the coulomb collision of ions with quivering electrons[J]. Physical Review Letters, 2022, 128: 052501. doi: 10.1103/PhysRevLett.128.052501
|
| [13] |
Feng Jie, Qi Jintao, Zhang Hanxu, et al. Laser-based approach to measure small nuclear cross sections in plasma[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121: e2413221121. doi: 10.1073/pnas.2413221121
|
| [14] |
Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
|
| [15] |
Winkler P, Trunk M, Hübner L, et al. Active energy compression of a laser-plasma electron beam[J]. Nature, 2025, 640(8060): 907-910. doi: 10.1038/s41586-025-08772-y
|
| [16] |
Barber S K, Kohrell F, Doss C E, et al. Greater than 1000-fold gain in a free-electron laser driven by a laser-plasma accelerator with high reliability[J]. Physical Review Letters, 2025, 135: 055001. doi: 10.1103/vh62-gz1p
|
| [17] |
Hao Chen X-Y Z, Guo-Qian Liao, et al. All-optical table-top strong-field terahertz pump – ultrafast X-ray probe platform[J]. Review of Scientific Instruments, (accepted)..
|
| [18] |
Feng Jie, Ren Jie, Xu Hao, et al. Proof-of-principle demonstration of epithermal neutron resonance spectroscopy utilizing a compact laser-driven electron accelerator[J]. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122: e2518397122. doi: 10.1073/pnas.2518397122
|
| [19] |
Chen Hao, Liao Guoqian, Wu Hongyuan, et al. Optimized terahertz generation in BNA organic crystals with chirped Ti: sapphire laser pulses[J]. Optics Letters, 2024, 49(18): 5047-5050. doi: 10.1364/OL.533146
|
| [20] |
Lu W, Nicoul M, Shymanovich U, et al. A modular table-top setup for ultrafast x-ray diffraction[J]. Review of Scientific Instruments, 2024, 95: 013002. doi: 10.1063/5.0181132
|
| [21] |
Claude R, Puppin M, Weaver B, et al. Shot-to-shot acquisition ultrafast electron diffraction[DB/OL]. arXiv preprint arXiv: 2502.02540, 2025.
|
| [22] |
Hao Xu J F, Zhu Mingyang, Shi Bingzhan, et al. Experimental demonstration of fast neutron absorption spectroscopy with laser-driven neutron source[J]. (under review)..
|
| [23] |
雷弘毅, 孙方正, 陈浩, 等. 强场太赫兹脉冲波形和频谱的单发测量技术[J]. 中国激光, 2023, 50: 1714001 doi: 10.3788/CJL230790
Lei Hongyi, Sun Fangzheng, Chen Hao, et al. Single-shot waveform and spectrum measurement techniques for strong field terahertz pulses[J]. Chinese Journal of Lasers, 2023, 50: 1714001 doi: 10.3788/CJL230790
|
| [24] |
Ruan J Y, Zhang X Y, Liao G Q, et al. Terawatt-level widely-tunable terahertz bursts from femtosecond laser-irradiated metallic foils[J]. (under review)..
|
| [25] |
Zhu Changqing, Wang Jinguang, Feng Jie, et al. Inverse Compton scattering x-ray source from laser electron accelerator in pure nitrogen with 15 TW laser pulses[J]. Plasma Physics and Controlled Fusion, 2019, 61: 024001. doi: 10.1088/1361-6587/aaebe3
|
| [26] |
Chen Siyu, Yan Wenchao, Zhu Mingyang, et al. A platform for all-optical Thomson/Compton scattering with versatile parameters[J]. High Power Laser Science and Engineering, 2025, 13: e56. doi: 10.1017/hpl.2025.36
|
| [27] |
Hu Xichen, Zhu Mingyang, Xie Pengpei, et al. Enhanced inverse Compton scattering via spontaneous focusing induced by coated plasma mirror[J]. (under review)..
|
| [28] |
Mirzaie M, Hojbota C I, Kim D Y, et al. All-optical nonlinear Compton scattering performed with a multi-petawatt laser[J]. Nature Photonics, 2024, 18(11): 1212-1217. doi: 10.1038/s41566-024-01550-8
|
| [29] |
Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Physics and Controlled Fusion, 2016, 58: 103001. doi: 10.1088/0741-3335/58/10/103001
|
| [30] |
Senthilkumaran V, Beier N F, Fourmaux S, et al. Laser-driven betatron x rays for high-throughput imaging of additively manufactured materials[J]. Rev Sci Instrum, 2024, 95: 123510. doi: 10.1063/5.0221606
|
| [31] |
Gruse J N, Streeter M J V, Thornton C, et al. Application of compact laser-driven accelerator X-ray sources for industrial imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 983: 164369. doi: 10.1016/j.nima.2020.164369
|
| [32] |
Cole J M, Symes D R, Lopes N C, et al. High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6335-6340.
|
| [33] |
Hussein A E, Senabulya N, Ma Y, et al. Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures[J]. Scientific Reports, 2019, 9: 3249. doi: 10.1038/s41598-019-39845-4
|
| [34] |
Balcazar M D, Tsai H E, Ostermayr T M, et al. Multi-messenger dynamic imaging of laser-driven shocks in water using a plasma wakefield accelerator[J]. Nature Communications, 2025.
|
| [35] |
Kettle B, Colgan C, Los E E, et al. Extended X-ray absorption spectroscopy using an ultrashort pulse laboratory-scale laser-plasma accelerator[J]. Communications Physics, 2024, 7: 247. doi: 10.1038/s42005-024-01735-1
|
| [36] |
Huang K, Li Y F, Li D Z, et al. Resonantly enhanced betatron hard X-rays from ionization injected electrons in a laser plasma accelerator[J]. Scientific Reports, 2016, 6: 27633. doi: 10.1038/srep27633
|
| [37] |
Tan J H, Li Y F, Li D Z, et al. Observation of high efficiency Betatron radiation from femtosecond petawatt laser irradiated near critical plasmas[DB/OL]. arXiv preprint arXiv: 2109.12467, 2021.
|
| [38] |
Shou Yinren, Wang Pengjie, Lee S G, et al. Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma[J]. Nature Photonics, 2023, 17(2): 137-142. doi: 10.1038/s41566-022-01114-8
|
| [39] |
Hu Xichen, Zhu Mingyang, Li Yifei, et al. Hundreds of nanocoulomb electron acceleration driven by multipetawatt laser in subcritical density plasmas[J]. Advanced Photonics Research, 2025, 6: 2500056. doi: 10.1002/adpr.202500056
|
| [40] |
Chen Liming, Feng Jie, Yan Wenchao, et al. Ultra-high charge electron acceleration for nuclear applications[J]. Fundamental Plasma Physics, 2024, 12: 100071. doi: 10.1016/j.fpp.2024.100071
|
| [41] |
Nakanii N, Huang K, Kondo K, et al. Precise pointing control of high-energy electron beam from laser wakefield acceleration using an aperture[J]. Applied Physics Express, 2023, 16: 026001. doi: 10.35848/1882-0786/acb892
|
| [42] |
Shalloo R J, Dann S J D, Gruse J N, et al. Automation and control of laser wakefield accelerators using Bayesian optimization[J]. Nature Communications, 2020, 11: 6355. doi: 10.1038/s41467-020-20245-6
|
| [43] |
Zhai H T, Zhu M Y, Hu X C, et al. Efficient generation of hundred nano-coulomb electron beam via hybrid plasma wakefield acceleration[J]. High Power Laser Science and Engineering (accepted)..
|