| Citation: | Abdughupur.Ablimit, Ou Yang Chen, Gao Xing Lan, et al. Recent Advances in Betatron Radiation Sources Driven by Laser–Plasma Interactions[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250384 |
| [1] |
Aad G, Abajyan T, Abbott B, et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[J]. Physics Letters B, 2012, 716(1): 1-29. doi: 10.1063/1.4826710
|
| [2] |
Sciaini G, Miller R J D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics[J]. Reports on Progress in Physics, 2011, 74: 096101. doi: 10.1088/0034-4885/74/9/096101
|
| [3] |
Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
|
| [4] |
Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
|
| [5] |
Pukhov A, Meyer-ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4/5): 355-361. doi: 10.1007/s003400200795
|
| [6] |
Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions[J]. Nature, 2004, 431(7008): 535-538. doi: 10.1038/nature02939
|
| [7] |
Geddes C G R, Toth C, Van Tilborg J, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431(7008): 538-541. doi: 10.1038/nature02900
|
| [8] |
Faure J, Glinec Y, Pukhov A, et al. A laser–plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544. doi: 10.1038/nature02963
|
| [9] |
Leemans W P, Nagler B, Gonsalves A J, et al. GeV electron beams from a centimetre-scale accelerator[J]. Nature Physics, 2006, 2(10): 696-699. doi: 10.1038/nphys418
|
| [10] |
Wang Xiaoming, Zgadzaj R, Fazel N, et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 2013, 4: 1988. doi: 10.1038/ncomms2988
|
| [11] |
Leemans W P, Gonsalves A J, Mao H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 2014, 113: 245002. doi: 10.1103/PhysRevLett.113.245002
|
| [12] |
Mirzaie M, Li S, Zeng M, et al. Demonstration of self-truncated ionization injection for GeV electron beams[J]. Scientific Reports, 2015, 5: 14659. doi: 10.1038/srep14659
|
| [13] |
Gonsalves A J, Nakamura K, Daniels J, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary dischargewaveguide[J]. Physical Review Letters, 2019, 122: 084801. doi: 10.1103/PhysRevLett.122.084801
|
| [14] |
Aniculaesei C, Ha T, Yoffe S, et al. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator[J]. Matter and Radiation at Extremes, 2024, 9: 014001. doi: 10.1063/5.0161687
|
| [15] |
Wang Shuoqin, Clayton C E, Blue B E, et al. X-ray emission from betatron motion in a plasma wiggler[J]. Physical Review Letters, 2002, 88: 135004. doi: 10.1103/PhysRevLett.88.135004
|
| [16] |
Rousse A, Phuoc K T, Shah R, et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction[J]. Physical Review Letters, 2004, 93: 135005. doi: 10.1103/PhysRevLett.93.135005
|
| [17] |
Shah R C, Albert F, Ta Phuoc K, et al. Coherence-based transverse measurement of synchrotron x-ray radiation from relativistic laser-plasma interaction and laser-accelerated electrons[J]. Physical Review E, 2006, 74: 045401. doi: 10.1109/qels.2007.4431186
|
| [18] |
Björklund Svensson J, Guénot D, Ferri J, et al. Low-divergence femtosecond X-ray pulses from a passive plasma lens[J]. Nature Physics, 2021, 17(5): 639-645. doi: 10.1038/s41567-020-01158-z
|
| [19] |
Ta Phuoc K, Fitour R, Tafzi A, et al. Demonstration of the ultrafast nature of laser produced betatron radiation[J]. Physics of Plasmas, 2007, 14: 080701. doi: 10.1063/1.2754624
|
| [20] |
Horný V, Nejdl J, Kozlová M, et al. Temporal profile of betatron radiation from laser-driven electron accelerators[J]. Physics of Plasmas, 2017, 24: 063107. doi: 10.1063/1.4985687
|
| [21] |
Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 2011, 7(11): 867-871. doi: 10.1038/nphys2090
|
| [22] |
Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
|
| [23] |
Kneip S, McGuffey C, Martins J L, et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Physics, 2010, 6(12): 980-983. doi: 10.1038/nphys1789
|
| [24] |
Bilderback D H, Elleaume P, Weckert E. Review of third and next generation synchrotron light sources[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38(9): S773-S797. doi: 10.1088/0953-4075/38/9/022
|
| [25] |
Mahieu B, Jourdain N, Ta Phuoc K, et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source[J]. Nature Communications, 2018, 9: 3276. doi: 10.1038/s41467-018-05791-4
|
| [26] |
Wood J C, Chapman D J, Poder K, et al. Ultrafast imaging of laser driven shock waves using betatron X-rays from a laser wakefield accelerator[J]. Scientific Reports, 2018, 8: 11010. doi: 10.1038/s41598-018-29347-0
|
| [27] |
Wenz J, Schleede S, Khrennikov K, et al. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source[J]. Nature Communications, 2015, 6: 7568. doi: 10.1038/ncomms8568
|
| [28] |
Döpp A, Hehn L, Götzfried J, et al. Quick X-ray microtomography using a laser-driven betatron source[J]. Optica, 2018, 5(2): 199-203. doi: 10.1364/OPTICA.5.000199
|
| [29] |
Pukhov A, Sheng Z M, Meyer-ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
|
| [30] |
Gahn C, Tsakiris G D, Pukhov A, et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels[J]. Physical Review Letters, 1999, 83(23): 4772-4775. doi: 10.1103/PhysRevLett.83.4772
|
| [31] |
Meyer-ter-Vehn J, Sheng Z M. On electron acceleration by intense laser pulses in the presence of a stochastic field[J]. Physics of Plasmas, 1999, 6(3): 641-644. doi: 10.1063/1.873347
|
| [32] |
Kiselev S, Pukhov A, Kostyukov I. X-ray generation in strongly nonlinear plasma waves[J]. Physical Review Letters, 2004, 93: 135004. doi: 10.1103/PhysRevLett.93.135004
|
| [33] |
Kneip S, Nagel S R, Bellei C, et al. Observation of synchrotron radiation from electrons accelerated in a Petawatt-laser-generated plasma cavity[J]. Physical Review Letters, 2008, 100: 105006. doi: 10.1103/PhysRevLett.100.105006
|
| [34] |
Babjak R, Willingale L, Arefiev A, et al. Direct laser acceleration in underdense plasmas with multi-PW lasers: a path to high-charge, GeV-class electron bunches[J]. Physical Review Letters, 2024, 132: 125001. doi: 10.1103/PhysRevLett.132.125001
|
| [35] |
Hussein A E, Arefiev A V, Batson T, et al. Towards the optimisation of direct laser acceleration[J]. New Journal of Physics, 2021, 23: 023031. doi: 10.1088/1367-2630/abdf9a
|
| [36] |
Shaw J L, Romo-Gonzalez M A, Lemos N, et al. Microcoulomb (0.7 ±
|
| [37] |
黄瑞贤, 奚传易, 韩立琦, 等. 飞秒激光Betatron辐射源的现状与发展趋势分析[J]. 强激光与粒子束, 2023, 35: 012009 doi: 10.11884/HPLPB202335.220229
Huang Ruixian, Xi Chuanyi, Han Liqi, et al. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35: 012009 doi: 10.11884/HPLPB202335.220229
|
| [38] |
Lu Wei, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics—Accelerators and Beams, 2007, 10: 061301. doi: 10.1103/PhysRevSTAB.10.061301
|
| [39] |
Németh K, Shen Baifei, Li Yuelin, et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity[J]. Physical Review Letters, 2008, 100: 095002. doi: 10.1103/PhysRevLett.100.095002
|
| [40] |
Albert F, Shah R, Phuoc K T, et al. Betatron oscillations of electrons accelerated in laser wakefields characterized by spectral X-ray analysis[J]. Physical Review E, 2008, 77: 056402. doi: 10.1103/PhysRevE.77.056402
|
| [41] |
Chen L M, Yan W C, Li D Z, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific reports, 2013, 3(1): 1912. doi: 10.1038/srep01912
|
| [42] |
Huang K, Li Y F, Li D Z, et al. Resonantly enhanced betatron hard x-rays from ionization injected electrons in a laser plasma accelerator[J]. Scientific Reports, 2016, 6: 27633. doi: 10.1038/srep27633
|
| [43] |
Yu Changhai, Liu Jiansheng, Wang Wentao, et al. Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front[J]. Applied Physics Letters, 2018, 112: 133503. doi: 10.1063/1.5019406
|
| [44] |
Chen Jiyuan, Xu Sa, Tang Ning, et al. Enhanced soft X-ray betatron radiation from a transversely oscillating laser plasma wake[J]. Optics Express, 2021, 29(9): 13302-13313. doi: 10.1364/OE.420150
|
| [45] |
Feng Jie, Li Yifei, Wang Jinguang, et al. Gamma-ray emission from wakefield-accelerated electrons wiggling in a laser field[J]. Scientific Reports, 2019, 9: 2531. doi: 10.1038/s41598-019-38777-3
|
| [46] |
Kozlova M, Andriyash I, Gautier J, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 2020, 10: 011061. doi: 10.1103/physrevx.10.011061
|
| [47] |
Lei Bifeng, Wang Jingwei, Kharin V, et al. γ-ray generation from plasma wakefield resonant wiggler[J]. Physical Review Letters, 2018, 120: 134801. doi: 10.1103/PhysRevLett.120.134801
|
| [48] |
Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 2018, 120: 254802. doi: 10.1103/PhysRevLett.120.254802
|
| [49] |
Zhu Xinglong, Chen Min, Weng Suming, et al. Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator[J]. Science Advances, 2020, 6: eaaz7240. doi: 10.1126/sciadv.aaz7240
|
| [50] |
Lu Yu, Zhang Guobo, Zhao Jie, et al. Ultra-brilliant GeV betatronlike radiation from energetic electrons oscillating in frequency-downshifted laser pulses[J]. Optics Express, 2021, 29(6): 8926-8940. doi: 10.1364/OE.419761
|
| [51] |
Cole J M, Symes D R, Lopes N C, et al. High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6335-6340.
|
| [52] |
Zhang Hong, Deng Zhigang, Jiang Hai, et al. High-brightness betatron X-ray source driven by the SULF-1 PW laser[J]. High Power Laser Science and Engineering, 2025, 13: e31. doi: 10.1017/hpl.2025.17
|
| [53] |
Corde S, Phuoc K T, Fitour R, et al. Controlled betatron X-ray radiation from tunable optically injected electrons[J]. Physical Review Letters, 2011, 107: 255003. doi: 10.1103/PhysRevLett.107.255003
|
| [54] |
Döpp A, Mahieu B, Lifschitz A, et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator[J]. Light: Science & Applications, 2017, 6: e17086.
|
| [55] |
Zhang Guobo, Chen Min, Yang Xaiohu, et al. Betatron radiation polarization control by using an off-axis ionization injection in a laser wakefield acceleration[J]. Optics Express, 2020, 28(20): 29927-29936. doi: 10.1364/OE.404723
|
| [56] |
Thaury C, Guillaume E, Corde S, et al. Angular-momentum evolution in laser-plasma accelerators[J]. Physical Review Letters, 2013, 111: 135002. doi: 10.1103/PhysRevLett.111.135002
|
| [57] |
Schnell M, Sävert A, Uschmann I, et al. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator[J]. Nature Communications, 2013, 4: 2421. doi: 10.1038/ncomms3421
|
| [58] |
Luo J, Chen M, Zeng M, et al. A compact tunable polarized X-ray source based on laser-plasma helical undulators[J]. Scientific Reports, 2016, 6: 29101. doi: 10.1038/srep29101
|
| [59] |
Chang H X, Qiao B, Huang T W, et al. Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction[J]. Scientific Reports, 2017, 7: 45031. doi: 10.1038/srep45031
|
| [60] |
Luís Martins J, Vieira J, Ferri J, et al. Radiation emission in laser-wakefields driven by structured laser pulses with orbital angular momentum[J]. Scientific Reports, 2019, 9: 9840. doi: 10.1038/s41598-019-45474-8
|
| [61] |
Feng Jie, Li Yifei, Geng Xiaotao, et al. Circularly polarized X-ray generation from an ionization induced laser plasma electron accelerator[J]. Plasma Physics and Controlled Fusion, 2020, 62: 105021. doi: 10.1088/1361-6587/abaf0b
|
| [62] |
Rechatin C, Davoine X, Lifschitz A, et al. Observation of beam loading in a laser-plasma accelerator[J]. Physical Review Letters, 2009, 103: 194804. doi: 10.1103/PhysRevLett.103.194804
|
| [63] |
Danson C N, Haefner C, Bromage J, et al. Petawatt and Exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
|
| [64] |
冷雨欣. 上海超强超短激光实验装置[J]. 中国激光, 2019, 46: 0100001 doi: 10.3788/CJL201946.0100001
Leng Yuxin. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 2019, 46: 0100001 doi: 10.3788/CJL201946.0100001
|
| [65] |
Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, et al. Multi-Petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 2017, 42(10): 2014-2017. doi: 10.1364/OL.42.002014
|
| [66] |
Cikhardt J, Gyrdymov M, Zähter S, et al. Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density[J]. Matter and Radiation at Extremes, 2024, 9: 027201. doi: 10.1063/5.0181119
|
| [67] |
Tan J H, Li Y F, Li D Z, et al. Observation of high efficiency Betatron radiation from femtosecond Petawatt laser irradiated near critical plasmas[DB/OL]. arXiv preprint arXiv: 2109.12467, 2021.
|
| [68] |
Lobok M G, Andriyash I A, Vais O E, et al. Bright synchrotron radiation from relativistic self-trapping of a short laser pulse in near-critical density plasma[J]. Physical Review E, 2021, 104: L053201. doi: 10.1103/PhysRevE.104.L053201
|
| [69] |
Huang Ruixuan, Han Liqi, Shou Yinren, et al. High-flux and bright betatron X-ray source generated from femtosecond laser pulse interaction with sub-critical density plasma[J]. Optics Letters, 2023, 48(3): 819-822. doi: 10.1364/OL.480553
|
| [70] |
Chu Mengyuan, Luan Shixia, Yang Hetian, et al. Controlled Betatron radiation from high-charge electron beams in multiple plasma channels[J]. Optics Express, 2025, 33(10): 21070-21078. doi: 10.1364/OE.557855
|
| [71] |
谢波, 张晓辉, 李天月, 等. 拍瓦飞秒激光与近临界密度等离子体相互作用的电子加速及betatron辐射产生数值模拟D[J]. 强激光与粒子束, 2025, 37: 091002
Xie Bo, Zhang Xiaohui, Li Tianyue, et al. Numerical study of electron acceleration and betatron radiation based on interaction of petawatt femtosecond laser with near-critical-density plasma[J]. High Power Laser and Particle Beams, 2025, 37: 091002
|
| [72] |
Zhao Yan, Lu Haiyang, Zhou Cangtao, et al. Overcritical electron acceleration and betatron radiation in the bubble-like structure formed by re-injected electrons in a tailored transverse plasma[J]. Matter and Radiation at Extremes, 2023, 8: 014403. doi: 10.1063/5.0121558
|
| [73] |
Babjak R, Vranić M. Betatron radiation emitted during the direct laser acceleration of electrons in underdense plasmas[J]. Plasma Physics and Controlled Fusion, 2025, 67: 085019. doi: 10.1088/1361-6587/adf50b
|
| [74] |
Ridgers C P, Brady C S, Duclous R, et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids[J]. Physical Review Letters, 2012, 108: 165006. doi: 10.1103/PhysRevLett.108.165006
|
| [75] |
Capdessus R, d’Humières E, Tikhonchuk V T. Influence of ion mass on laser-energy absorption and synchrotron radiation at ultrahigh laser intensities[J]. Physical Review Letters, 2013, 110: 215003. doi: 10.1103/PhysRevLett.110.215003
|
| [76] |
Yu Tongpu, Pukhov A, Sheng Zhengming, et al. Bright Betatronlike X rays from radiation pressure acceleration of a mass-limited foil target[J]. Physical Review Letters, 2013, 110: 045001. doi: 10.1103/PhysRevLett.110.045001
|
| [77] |
Wang Weimin, Sheng Zhengming, Gibbon P, et al. Collimated ultrabright gamma rays from electron wiggling along a Petawatt laser-irradiated wire in the QED regime[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(40): 9911-9916.
|
| [78] |
Yu J Q, Hu R H, Gong Z, et al. The generation of collimated γ-ray pulse from the interaction between 10 PW laser and a narrow tube target[J]. Applied Physics Letters, 2018, 112: 204103. doi: 10.1063/1.5030942
|
| [79] |
Rosmej O N, Shen Xiaofei, Pukhov A, et al. Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity[J]. Matter and Radiation at Extremes, 2021, 6: 048401. doi: 10.1063/5.0042315
|
| [80] |
Shen Xiaofei, Pukhov A, Qiao Bin. High-flux bright x-ray source from femtosecond laser-irradiated microtapes[J]. Communications Physics, 2024, 7: 84. doi: 10.1038/s42005-024-01575-z
|
| [81] |
Shen Xiaofei, Pukhov A, Günther M M, et al. Bright betatron X-rays generation from picosecond laser interactions with long-scale near critical density plasmas[J]. Applied Physics Letters, 2021, 118: 134102. doi: 10.1063/5.0042997
|
| [82] |
Brady C S, Ridgers C P, Arber T D, et al. Gamma-ray emission in near critical density plasmas[J]. Plasma Physics and Controlled Fusion, 2013, 55: 124016. doi: 10.1088/0741-3335/55/12/124016
|
| [83] |
Brady C S, Ridgers C P, Arber T D, et al. Laser absorption in relativistically underdense plasmas by synchrotron radiation[J]. Physical Review Letters, 2012, 109: 245006. doi: 10.1103/PhysRevLett.109.245006
|
| [84] |
Rosmej O N, Gyrdymov M, Andreev N E, et al. Advanced plasma target from pre-ionized low-density foam for effective and robust direct laser acceleration of electrons[J]. High Power Laser Science and Engineering, 2025, 13: e3. doi: 10.1017/hpl.2024.85
|
| [85] |
Rosmej O N, Gyrdymov M, Günther M M, et al. High-current laser-driven beams of relativistic electrons for high energy density research[J]. Plasma Physics and Controlled Fusion, 2020, 62: 115024. doi: 10.1088/1361-6587/abb24e
|