| Citation: | He Shukai, Cui Bo, Qi Wei, et al. Research progress in the generation and applications of high-flux neutron sources driven by high-power laser facilities[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250386 |
| [1] |
Dams R, Robbins J A, Rahn K A, et al. Nondestructive neutron activation analysis of air pollution particulates[J]. Analytical Chemistry, 1970, 42(8): 861-867. doi: 10.1016/b978-0-12-239450-8.50101-5
|
| [2] |
Nishiyama Y, Sugiyama J, Chanzy H, et al. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction[J]. Journal of the American Chemical Society, 2003, 125(47): 14300-14306. doi: 10.1021/ja037055w
|
| [3] |
Goldhaber M, Teller E. On nuclear dipole vibrations[J]. Physical Review, 1948, 74(9): 1046-1049. doi: 10.1103/PhysRev.74.1046
|
| [4] |
Ageron P. Cold neutron sources at ILL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 284(1): 197-199.
|
| [5] |
Wei J, Chen H S, Chen Y W, et al. China Spallation Neutron Source: design, R&D, and outlook[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600(1): 10-13.
|
| [6] |
Blau B, Clausen K N, Gvasaliya S, et al. The Swiss spallation neutron source SINQ at Paul Scherrer Institut[J]. Neutron News, 2009, 20(3): 5-8. doi: 10.1080/10448630903120387
|
| [7] |
Yogo A, Mirfayzi S R, Arikawa Y, et al. Single shot radiography by a bright source of laser-driven thermal neutrons and x-rays[J]. Applied Physics Express, 2021, 14: 106001. doi: 10.35848/1882-0786/ac2212
|
| [8] |
Guler N, Volegov P, Favalli A, et al. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility[J]. Journal of Applied Physics, 2016, 120: 154901. doi: 10.1063/1.4964248
|
| [9] |
Nelson R O, Vogel S C, Hunter J F, et al. Neutron imaging at LANSCE—from cold to ultrafast[J]. Journal of Imaging, 2018, 4: 45. doi: 10.3390/jimaging4020045
|
| [10] |
Lee S, Park S, Lee K, et al. A laser-induced repetitive fast neutron source applied for gold activation analysis[J]. Review of Scientific Instruments, 2012, 83: 123504. doi: 10.1063/1.4769055
|
| [11] |
Abe Y, Nakao A, Arikawa Y, et al. Predictive capability of material screening by fast neutron activation analysis using laser-driven neutron sources[J]. Review of Scientific Instruments, 2022, 93: 093523. doi: 10.1063/5.0099217
|
| [12] |
Perkins L J, Logan B G, Rosen M D, et al. The investigation of high intensity laser driven micro neutron sources for fusion materials research at high fluence[J]. Nuclear Fusion, 2000, 40(1): 1-19. doi: 10.1088/0029-5515/40/1/301
|
| [13] |
Hill P, Wu Y B. Exploring laser-driven neutron sources for neutron capture cascades and the production of neutron-rich isotopes[J]. Physical Review C, 2021, 103: 014602. doi: 10.1103/PhysRevC.103.014602
|
| [14] |
Fultz S C, Bramblett R L, Caldwell J T, et al. Photoneutron cross-section measurements on gold using nearly monochromatic photons[J]. Physical Review, 1962, 127(4): 1273-1279. doi: 10.1103/PhysRev.127.1273
|
| [15] |
Yogo A, Lan Z, Arikawa Y, et al. Laser-driven neutron generation realizing single-shot resonance spectroscopy[J]. Physical Review X, 2023, 13: 011011.
|
| [16] |
Hidding B, Karger O, Königstein T, et al. Laser-plasma-based Space Radiation Reproduction in the Laboratory[J]. Scientific Reports, 2017, 7: 42354. doi: 10.1038/srep42354
|
| [17] |
Leemans W P, Rodgers D, Catravas P E, et al. Gamma-neutron activation experiments using laser wakefield accelerators[J]. Physics of Plasmas, 2001, 8(5): 2510-2516. doi: 10.1063/1.1352617
|
| [18] |
Reed S A, Chvykov V, Kalintchenko G, et al. Efficient initiation of photonuclear reactions using quasimonoenergetic electron beams from laser wakefield acceleration[J]. Journal of Applied Physics, 2007, 102: 073103. doi: 10.1063/1.2787159
|
| [19] |
Jiao X J, Shaw J M, Wang T, et al. A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration[J]. Matter and Radiation at Extremes, 2017, 2(6): 296-302. doi: 10.1016/j.mre.2017.10.003
|
| [20] |
Galy J, Maučec M, Hamilton D J, et al. Bremsstrahlung production with high-intensity laser matter interactions and applications[J]. New Journal of Physics, 2007, 9: 23. doi: 10.1088/1367-2630/9/2/023
|
| [21] |
Feng J, Fu C B, Li Y F, et al. High-efficiency neutron source generation from photonuclear reactions driven by laser plasma accelerator[J]. High Energy Density Physics, 2020, 36: 100753. doi: 10.1016/j.hedp.2020.100753
|
| [22] |
齐伟, 贺书凯, 闫永宏, 等. 超短脉冲激光与固体靶作用产生光核中子的数值模拟研究[J]. 中国激光, 2019, 46: 0901007 doi: 10.3788/CJL201946.0901007
Qi Wei, He Shukai, Yan Yonghong, et al. Numerical simulation of photoneutron generation in ultra-intense short laser-solid interactions[J]. Chinese Journal of Lasers, 2019, 46: 0901007 doi: 10.3788/CJL201946.0901007
|
| [23] |
Peralta E A, Soong K, England R J, et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure[J]. Nature, 2013, 503(7474): 91-94. doi: 10.1038/nature12664
|
| [24] |
Stupakov G V, Zolotorev M S. Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches[J]. Physical Review Letters, 2001, 86(23): 5274-5277. doi: 10.1103/PhysRevLett.86.5274
|
| [25] |
Shkolnikov P L, Kaplan A E, Pukhov A, et al. Positron and gamma-photon production and nuclear reactions in cascade processes initiated by a sub-terawatt femtosecond laser[J]. Applied Physics Letters, 1997, 71(24): 3471-3473. doi: 10.1063/1.120362
|
| [26] |
Pomerantz I, McCary E, Meadows A R, et al. Ultrashort pulsed neutron source[J]. Physical Review Letters, 2014, 113: 184801. doi: 10.1103/PhysRevLett.113.184801
|
| [27] |
Jiang X R, Zou D B, Zhao Z J, et al. Microstructure-assisted laser-driven photonuclear pulsed neutron source[J]. Physical Review Applied, 2021, 15: 034032. doi: 10.1103/PhysRevApplied.15.034032
|
| [28] |
Günther M M, Rosmej O N, Tavana P, et al. Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science[J]. Nature Communications, 2022, 13: 170. doi: 10.1038/s41467-021-27694-7
|
| [29] |
Lancaster K L, Karsch S, Habara H, et al. Characterization of 7Li (p, n)7 Be neutron yields from laser produced ion beams for fast neutron radiography[J]. Physics of Plasmas, 2004, 11(7): 3404-3408. doi: 10.1063/1.1756911
|
| [30] |
Higginson D P, McNaney J M, Swift D C, et al. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions[J]. Physics of Plasmas, 2011, 18: 100703. doi: 10.1063/1.3654040
|
| [31] |
Roth M, Jung D, Falk K, et al. Bright laser-driven neutron source based on the relativistic transparency of solids[J]. Physical Review Letters, 2013, 110: 044802. doi: 10.1103/PhysRevLett.110.044802
|
| [32] |
Kleinschmidt A, Bagnoud V, Deppert O, et al. Intense, directed neutron beams from a laser-driven neutron source at PHELIX[J]. Physics of Plasmas, 2018, 25: 053101. doi: 10.1063/1.5006613
|
| [33] |
Jiao X, Curry C B, Gauthier M, et al. High deuteron and neutron yields from the interaction of a petawatt laser with a cryogenic deuterium jet[J]. Frontiers in Physics, 2023, 10: 964696. doi: 10.3389/fphy.2022.964696
|
| [34] |
Alejo A, Ahmed H, Krygier A G, et al. Stabilized radiation pressure acceleration and neutron generation in ultrathin deuterated foils[J]. Physical Review Letters, 2022, 129: 114801. doi: 10.1103/PhysRevLett.129.114801
|
| [35] |
Kar S, Green A, Ahmed H, et al. Beamed neutron emission driven by laser accelerated light ions[J]. New Journal of Physics, 2016, 18: 053002. doi: 10.1088/1367-2630/18/5/053002
|
| [36] |
Disdier L, Garçonnet J P, Malka G, et al. Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse[J]. Physical Review Letters, 1999, 82(7): 1454-1457. doi: 10.1103/PhysRevLett.82.1454
|
| [37] |
Zimmer M, Scheuren S, Kleinschmidt A, et al. Demonstration of non-destructive and isotope-sensitive material analysis using a short-pulsed laser-driven epi-thermal neutron source[J]. Nature Communications, 2022, 13: 1173. doi: 10.1038/s41467-022-28756-0
|
| [38] |
Mirfayzi S R, Ahmed H, Doria D, et al. A miniature thermal neutron source using high power lasers[J]. Applied Physics Letters, 2020, 116: 174102. doi: 10.1063/5.0003170
|
| [39] |
Mirfayzi S R, Yogo A, Lan Z, et al. Proof-of-principle experiment for laser-driven cold neutron source[J]. Scientific Reports, 2020, 10: 20157. doi: 10.1038/s41598-020-77086-y
|
| [40] |
Wu Y C, Zhu B, Dong K G, et al. XingGuang III laser facility and its experimental ability to drive high-energy particle beams[J]. Laser Physics, 2020, 30: 096001. doi: 10.1088/1555-6611/aba3ca
|
| [41] |
Qi W, Zhang X H, Zhang B, et al. Enhanced photoneutron production by intense picoseconds laser interacting with gas-solid hybrid targets[J]. Physics of Plasmas, 2019, 26: 043103. doi: 10.1063/1.5079773
|
| [42] |
崔波, 张智猛, 戴曾海, 等. 基于多反应通道的高产额激光中子源实验研究[J]. 强激光与粒子束, 2021, 33: 094004 doi: 10.11884/HPLPB202133.210330
Cui Bo, Zhang Zhimeng, Dai Zenghai, et al. Experimental study of high yield neutron source based on multi reaction channels[J]. High Power Laser and Particle Beams, 2021, 33: 094004 doi: 10.11884/HPLPB202133.210330
|
| [43] |
Yao Y L, He S K, Lei Z, et al. High-flux neutron generator based on laser-driven collisionless shock acceleration[J]. Physical Review Letters, 2023, 131: 025101. doi: 10.1103/PhysRevLett.131.025101
|
| [44] |
Li J J, Yu B, Xu T, et al. First magnifying neutron/x-ray combined radiography at Shenguang laser facility[J]. AIP Advances, 2022, 12: 115012. doi: 10.1063/5.0121977
|
| [45] |
齐伟, 贺书凯, 崔波, 等. 超短脉冲激光驱动束靶中子源产生及应用研究进展(特邀)[J]. 中国激光, 2024, 51: 0101004 doi: 10.3788/CJL231292
Qi Wei, He Shukai, Cui Bo, et al. Research progress of beam-target neutron source and applications driven by ultra-short pulse lasers (Invited)[J]. Chinese Journal of Lasers, 2024, 51: 0101004 doi: 10.3788/CJL231292
|