Turn off MathJax
Article Contents
Shi Baolong, Zhou Xiuwen, Yan Lianghong, et al. Research status of doped low-density polymer foams for inertial confinement fusion[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250403
Citation: Shi Baolong, Zhou Xiuwen, Yan Lianghong, et al. Research status of doped low-density polymer foams for inertial confinement fusion[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250403

Research status of doped low-density polymer foams for inertial confinement fusion

doi: 10.11884/HPLPB202638.250403
  • Received Date: 2026-11-01
  • Accepted Date: 2025-12-30
  • Rev Recd Date: 2026-01-08
  • Available Online: 2026-01-28
  • This paper focuses on the element doping technology of low-density polymer foams for inertial confinement fusion (ICF) experiments and summarizes their research status and development trends. As key target materials for ICF, low-density polymer foams can optimize radiation transport, suppress hydrodynamic instability, and achieve diagnostic functions by introducing doping elements such as chlorine, argon, and germanium. The paper systematically analyzes the principles, advantages, disadvantages, and application bottlenecks of two major types of technologies: physical doping (particle dispersion, physical vapor deposition) and chemical doping (copolymerization, monomer functionalization, polymer substitution), with an emphasis on core issues such as uniformity control and doping precision. Finally, it looks forward to cutting-edge directions including composite doping, two-photon polymerization, and ion implantation, providing technical references for the high-performance and precise preparation of ICF target materials and facilitating the development of high-repetition-rate ICF experiments.
  • loading
  • [1]
    Elliott N E, Mitchell M A. Characterization of density and metal content in low density foam targets for inertial confinement fusion[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 362(1): 112-113. doi: 10.1016/0168-9002(95)00236-7
    [2]
    Kim S H, Shin S J, Lenhardt J M, et al. Deterministic control over high-Z doping of polydicyclopentadiene-based aerogel coatings[J]. ACS Applied Materials & Interfaces, 2013, 5(16): 8111-8119. doi: 10.1021/am4021878
    [3]
    Hamilton C E, Honnell D, Patterson B M, et al. Incorporation of tracer elements within aerogels and CH foams[J]. Fusion Science and Technology, 2011, 59(1): 194-198. doi: 10.13182/FST59-194
    [4]
    王绍君. 激光惯性约束聚变压缩过程中激波相互作用的研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2023

    Wang Shaojun. Study of shock interactions during compression process in laser inertial confinement fusion[D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics CAS), 2023
    [5]
    侯海乾. 激光聚变靶用RF气凝胶空心微球制备的研究[D]. 绵阳: 西南科技大学, 2009

    Hou Haiqian. The research of preparation resorcinol-formaldehyde aerogel hollow microspheres used for laser fusion targets[D]. Mianyang: Southwest University of Science and Technology, 2009
    [6]
    张林, 王朝阳, 罗炫, 等. 热诱导倒相法超低密度PMP泡沫的研制[J]. 中国核科技报告, 2003(1): 131-144

    Zhang Lin, Wang Chaoyang, Luo Xuan, et al. Development on the fabrication of ultra-low density ploy(4-methyl-1-pentene)(PMP) foams by thermal induced phase-inversion technique[J]. China Nuclear Science and Technology Report, 2003(1): 131-144
    [7]
    Zhang Qin, Li Keran, Li Jing. Superhydrophobic polystyrene foam with photothermal effect for continuous and long-term efficient oil–water separation[J]. Separation and Purification Technology, 2025, 364: 132385. doi: 10.1016/j.seppur.2025.132385
    [8]
    Zhang Qin, Li Keran, Li Jing, et al. Fabrication of hierarchically porous superhydrophobic polystyrene foam for self-cleaning, oil absorbent, highly efficient oil–water separation[J]. Chemical Engineering Journal, 2024, 483: 149338. doi: 10.1016/j.cej.2024.149338
    [9]
    肖德龙, 丁宁, 王冠琼, 等. Z箍缩聚变及高能量密度应用研究进展[J]. 强激光与粒子束, 2020, 32: 092005 doi: 10.11884/HPLPB202032.200094

    Xiao Delong, Ding Ning, Wang Guanqiong, et al. Review of Z-pinch driven fusion and high energy density physics applications[J]. High Power Laser and Particle Beams, 2020, 32: 092005 doi: 10.11884/HPLPB202032.200094
    [10]
    Croix C, Sauvage C E, Balland-Longeau A, et al. New gold-doped foams by copolymerization of organogold(I) monomers for inertial confinement fusion (ICF) targets[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18(3): 334-343. doi: 10.1007/s10904-008-9204-1
    [11]
    Cook R, Overturf G E, Buckley S R, et al. Production and characterization of doped mandrels for inertial-confinement fusion experiments[J]. Journal of Vacuum Science & Technology A, 1994, 12(4): 1275-1280. doi: 10.1116/1.579308
    [12]
    乔秀梅, 郑无敌, 高耀明, 等. 神光Ⅱ间接驱动内爆实验ArX射线谱线模拟研究[J]. 物理学报, 2012, 61(17): 339-344

    Qiao Xiumei, Zheng Wudi, Gao Yaoming, et al. Simulation of spectrum of doped Ar in indirectly driven implosion target[J]. Acta Physica Sinica, 2012, 61(17): 339-344
    [13]
    Barbeau Z, Raman K, Manuel M, et al. Design of a high energy density experiment to measure the suppression of hydrodynamic instability in an applied magnetic field[J]. Physics of Plasmas, 2022, 29: 012306. doi: 10.1063/5.0067124
    [14]
    陈诗佳, 张华, 周沧涛, 等. 利用掺杂层研究磁化靶中的能斯特效应[J]. 强激光与粒子束, 2024, 36: 092002

    Chen Shijia, Zhang Hua, Zhou Cangtao, et al. Nernst effects study using dopant layer on magnetized target[J]. High Power Laser and Particle Beams, 2024, 36: 092002
    [15]
    Regan S P, Epstein R, Hammel B A, et al. Hot-spot mix in ignition-scale implosions on the NIF[J]. Physics of Plasmas, 2012, 19: 056307. doi: 10.1063/1.3694057
    [16]
    Dewald E L, Pino J E, Tipton R E, et al. Pushered single shell implosions for mix and radiation trapping studies using high-Z layers on National Ignition Facility[J]. Physics of Plasmas, 2019, 26: 072705. doi: 10.1063/1.5109426
    [17]
    Hibbard R L, Bono M J, Amendt P A, et al. Precision manufacturing of inertial confinement fusion double shell laser targets for OMEGA[J]. Fusion Science and Technology, 2004, 45(2): 117-123. doi: 10.13182/fst04-a437
    [18]
    刘才林, 唐永健, 李怀曾. 惯性约束聚变靶材料掺杂技术综述[J]. 原子能科学技术, 1996, 30(1): 90-96

    Liu Cailin, Tang Yongjian, Li Huaizeng. The doping techniques of inertial confinement fusion target materials[J]. Atomic Energy Science and Technology, 1996, 30(1): 90-96
    [19]
    Xiong W, Yang X H, Zhang G B, et al. The effect of high-Z dopant on the ablation of carbon–hydrogen polymer target[J]. Plasma Physics and Controlled Fusion, 2024, 66: 095002. doi: 10.1088/1361-6587/ad6264
    [20]
    张庆军, 罗炫, 李泽甫, 等. μm量级钨掺杂PMP泡沫制备[J]. 强激光与粒子束, 2013, 25(11): 2905-2908 doi: 10.3788/HPLPB20132511.2905

    Zhang Qingjun, Luo Xuan, Li Zefu, et al. Preparation of tungsten-doped PMP foams in micron dimension[J]. High Power Laser and Particle Beams, 2013, 25(11): 2905-2908 doi: 10.3788/HPLPB20132511.2905
    [21]
    方瑜, 罗炫, 张庆军. 低密度PMP聚合物泡沫成型控制[J]. 强激光与粒子束, 2013, 25(11): 2873-2876 doi: 10.3788/HPLPB20132511.2873

    Fang Yu, Luo Xuan, Zhang Qingjun. Fabrication control of low density PMP foams[J]. High Power Laser and Particle Beams, 2013, 25(11): 2873-2876 doi: 10.3788/HPLPB20132511.2873
    [22]
    罗炫, 张林, 杜凯, 等. 低密度对二乙烯基苯泡沫的优化制备[J]. 强激光与粒子束, 2010, 22(1): 63-67 doi: 10.3788/HPLPB20102201.0063

    Luo Xuan, Zhang Lin, Du Kai, et al. Fabrication of low density p-divinylbenzene foams[J]. High Power Laser and Particle Beams, 2010, 22(1): 63-67 doi: 10.3788/HPLPB20102201.0063
    [23]
    林润雄, 崔轶, 刘磊, 等. 低密度二乙烯基苯泡沫的制备及成型[J]. 材料科学与工程学报, 2010, 28(2): 222-225

    Lin Runxiong, Cui Yi, Liu Lei, et al. Fabrication and molding of low density divinylbenzene foams by ICF[J]. Journal of Materials Science and Engineering, 2010, 28(2): 222-225
    [24]
    崔轶, 范勇恒, 罗炫, 等. DVB泡沫微胶囊的制备方法[J]. 高分子材料科学与工程, 2010, 26(6): 130-133

    Cui Yi, Fan Yongheng, Luo Xuan, et al. A method to make divinylbenzene foam shells by ICF target[J]. Polymer Materials Science & Engineering, 2010, 26(6): 130-133
    [25]
    罗炫, 方瑜, 范勇恒, 等. 氘代对二乙烯基苯的合成[J]. 化学试剂, 2009, 31(12): 974-976,984

    Luo Xuan, Fang Yu, Fan Yongheng, et al. Synthesis of deuterated p-divinylbenzene[J]. Chemical Reagents, 2009, 31(12): 974-976,984
    [26]
    罗炫, 方瑜, 范勇恒, 等. 低密度氘代对二乙烯基苯泡沫的研制[J]. 核化学与放射化学, 2010, 32(2): 126-128

    Luo Xuan, Fang Yu, Fan Yongheng, et al. Fabrication of low-density perdeuterated p-divinylbenzene foams[J]. Journal of Nuclear and Radiochemistry, 2010, 32(2): 126-128
    [27]
    张林, 罗炫, 杜凯. ICF靶低密度聚合物多孔材料研究进展[J]. 材料导报, 2002, 16(6): 48-51 doi: 10.3321/j.issn:1005-023X.2002.06.014

    Zhang Lin, Luo Xuan, Du Kai. Progress in research on low-density porous polymer for ICF targets[J]. Materials Reports, 2002, 16(6): 48-51 doi: 10.3321/j.issn:1005-023X.2002.06.014
    [28]
    高莎莎, 吴小军, 何智兵, 等. 激光惯性约束聚变靶制备技术研究进展[J]. 强激光与粒子束, 2020, 32: 032001 doi: 10.11884/HPLPB202032.200039

    Gao Shasha, Wu Xiaojun, He Zhibing, et al. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32: 032001 doi: 10.11884/HPLPB202032.200039
    [29]
    Steckle Jr W P, Nobile Jr A. Low-density materials for use in inertial fusion targets[J]. Fusion Science and Technology, 2003, 43(3): 301-306. doi: 10.13182/FST43-301
    [30]
    方瑜, 罗炫, 范勇恒, 等. 纳米金掺杂DVB聚合物泡沫的制备[J]. 原子能科学技术, 2009, 43(11): 987-991

    Fang Yu, Luo Xuan, Fan Yongheng, et al. Fabrication of gold nanoparticles doped DVB foams[J]. Atomic Energy Science and Technology, 2009, 43(11): 987-991
    [31]
    刘小林, 张庆军, 张勇, 等. 纳米金掺杂DVB泡沫微球的制备[J]. 功能材料, 2021, 52(2): 2185-2190 doi: 10.3969/j.issn.1001-9731.2021.02.025

    Liu Xiaolin, Zhang Qingjun, Zhang Yong, et al. Fabrication of gold nanoparticles doped DVB foam microspheres for inertial confinement fusion (ICF) target[J]. Journal of Functional Materials, 2021, 52(2): 2185-2190 doi: 10.3969/j.issn.1001-9731.2021.02.025
    [32]
    尹强, 张林, 罗炫, 等. 溴掺杂低密度PMP泡沫的制备技术研究[J]. 强激光与粒子束, 2005, 17(5): 700-702

    Yin Qiang, Zhang Lin, Luo Xuan, et al. Synthesis of low-density bromine doped PMP foam[J]. High Power Laser and Particle Beams, 2005, 17(5): 700-702
    [33]
    黄传群, 罗炫, 方瑜, 等. 锗掺杂聚合物及其泡沫的制备与表征[J]. 强激光与粒子束, 2013, 25(12): 3239-3242 doi: 10.3788/HPLPB20132512.3239

    Huang Chuanqun, Luo Xuan, Fang Yu, et al. Fabrication and characterization of Ge-doped polymer and foam[J]. High Power Laser and Particle Beams, 2013, 25(12): 3239-3242 doi: 10.3788/HPLPB20132512.3239
    [34]
    尹强, 张林, 杜凯, 等. 掺溴聚-4-甲基-1-戊烯的合成研究[J]. 强激光与粒子束, 2004, 16(5): 627-629

    Yin Qiang, Zhang Lin, Du Kai, et al. Preparation and investigation of brominated poly-4-methyl-1-pentene as target material[J]. High Power Laser and Particle Beams, 2004, 16(5): 627-629
    [35]
    Moreau L, Levassort C, Blondel B, et al. Recent advances in development of materials for laser target[J]. Laser and Particle Beams, 2009, 27(4): 537-544. doi: 10.1017/S0263034609000317
    [36]
    Han Wenjing, Li Jianying, Ju Hui, et al. Nitrogen-doped graphitic carbon-CoTe2 decorated on carbon aerogel microspheres as a high-rate and ultra-stable electrode for efficient capacitive storage[J]. ChemistrySelect, 2024, 9: e202405427.
    [37]
    Jiang L J, Campbell J H, Lu Y F, et al. Direct writing target structures by two-photon polymerization[J]. Fusion Science and Technology, 2016, 70(2): 295-309. doi: 10.13182/FST15-222
    [38]
    Wei Lai, Li Jing, Zhang Shuai, et al. Construction of EG/SiOC@C porous structure by direct ink writing and in-situ vapor self - Deposition to enhance microwave absorption[J]. Ceramics International, 2023, 49(15): 25144-25155. doi: 10.1016/j.ceramint.2023.05.046
    [39]
    Hund J F, Paguio R R, Frederick C A, et al. Silica, metal oxide, and doped aerogel development for target applications[J]. Fusion Science and Technology, 2006, 49(4): 669-675. doi: 10.13182/FST06-A1184
    [40]
    Shin S J, Lee J R I, Van Buuren T, et al. Ion implantation doping of inertial confinement fusion targets[J]. Fusion Science and Technology, 2018, 73(3): 467-473. doi: 10.1080/15361055.2017.1392181
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (17) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return