| Citation: | Li Zhanpeng, Lv Chong, Sun Wei, et al. Research on high-intensity laser physics at the China Institute of Atomic Energy and its applications in nuclear science[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250407 |
| [1] |
Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
|
| [2] |
Bulgakov A V, Ryabchikov Y V, Levy Y, et al. The roadmap of new capabilities of high-intensity lasers in material design and manipulation[DB/OL]. arXiv preprint arXiv: 2509.17662, 2025.
|
| [3] |
谷渝秋. 超热电子输运及相关现象研究[D]. 北京: 中国工程物理研究院, 2004
Gu Yuqiu. Studies on hot electron transportation and its correlative phenomenons[D]. Beijing: China Institute of Engineering Physics, 2004
|
| [4] |
Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
|
| [5] |
Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
|
| [6] |
胡艳婷, 张昊, 邓宏祥, 等. 激光驱动离子加速的研究进展及其重要应用综述[J]. 中国激光, 2021, 48: 0401006 doi: 10.3788/CJL202148.0401006
Hu Yanting, Zhang Hao, Deng Hongxiang, et al. Review of research developments and important applications of laser-driven ion acceleration[J]. Chinese Journal of Lasers, 2021, 48: 0401006 doi: 10.3788/CJL202148.0401006
|
| [7] |
Shen X F, Pukhov A, Qiao B. Monoenergetic high-energy ion source via femtosecond laser interacting with a microtape[J]. Physical Review X, 2021, 11: 041002. doi: 10.1103/physrevx.11.041002
|
| [8] |
Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction[J]. Reviews of Modern Physics, 2013, 85(2): 751-793. doi: 10.1103/RevModPhys.85.751
|
| [9] |
Roth M, Jung D, Falk K, et al. Bright laser-driven neutron source based on the relativistic transparency of solids[J]. Physical Review Letters, 2013, 110: 044802. doi: 10.1103/PhysRevLett.110.044802
|
| [10] |
齐伟, 贺书凯, 崔波, 等. 超短脉冲激光驱动束靶中子源产生及应用研究进展(特邀)[J]. 中国激光, 2024, 51: 0101004 doi: 10.3788/CJL231292
Qi Wei, He Shukai, Cui Bo, et al. Research progress of beam-target neutron source and applications driven by ultra-short pulse lasers (invited)[J]. Chinese Journal of Lasers, 2024, 51: 0101004 doi: 10.3788/CJL231292
|
| [11] |
Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
|
| [12] |
Corde S, Phuoc K T, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
|
| [13] |
Chen H, Wilks S C, Bonlie J D, et al. Making relativistic positrons using ultraintense short pulse lasers[J]. Physics of Plasmas, 2009, 16: 122702. doi: 10.1063/1.3271355
|
| [14] |
朱兴龙, 王伟民, 余同普, 等. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展[J]. 物理学报, 2021, 70: 085202 doi: 10.7498/aps.70.20202224
Zhu Xinglong, Wang Weimin, Yu Tongpu, et al. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields[J]. Acta Physica Sinica, 2021, 70: 085202 doi: 10.7498/aps.70.20202224
|
| [15] |
Zhang Feng, Deng Li, Ge Yanjie, et al. Proof-of-principle demonstration of muon production with an ultrashort high-intensity laser[J]. Nature Physics, 2025, 21(7): 1050-1056. doi: 10.1038/s41567-025-02872-2
|
| [16] |
Zhang Chuankun, Ooi T, Higgins J S, et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock[J]. Nature, 2024, 633(8028): 63-70. doi: 10.1038/s41586-024-07839-6
|
| [17] |
Tiedau J, Okhapkin M V, Zhang K, et al. Laser Excitation of the Th-229 Nucleus[J]. Physical Review Letters, 2024, 132: 182501. doi: 10.1103/PhysRevLett.132.182501
|
| [18] |
Strickland D. Nobel lecture: generating high-intensity ultrashort optical pulses[J]. Reviews of Modern Physics, 2019, 91: 030502. doi: 10.1103/RevModPhys.91.030502
|
| [19] |
Mourou G. Nobel lecture: extreme light physics and application[J]. Reviews of Modern Physics, 2019, 91: 030501. doi: 10.1103/RevModPhys.91.030501
|
| [20] |
王钊, 贺创业, 赵保真, 等. 中国原子能科学研究院激光技术发展及其在核科学中的应用[J]. 原子能科学技术, 2020, 54(s1): 47-64 doi: 10.7538/yzk.2020.zhuankan.0403
Wang Zhao, He Chuangye, Zhao Baozhen, et al. Development of laser technology and its application in nuclear science at CIAE[J]. Atomic Energy Science and Technology, 2020, 54(s1): 47-64 doi: 10.7538/yzk.2020.zhuankan.0403
|
| [21] |
Zhao Baozhen, Zhang Xiaohua, Lv Chong, et al. Improved cross polarized wave generation with an aperture[J]. AIP Advances, 2022, 12: 055128. doi: 10.1063/5.0090066
|
| [22] |
Zhao Baozhen, Zhang Xiaohua, Lv Chong, et al. Broadband spectral shaping of regenerative amplification with extra-cavity waveplate for cross polarized wave generation[J]. Applied Sciences, 2022, 12: 5521. doi: 10.3390/app12115521
|
| [23] |
Zhang Xiang, Fincke J R, Wynn C M, et al. Full noncontact laser ultrasound: first human data[J]. Light: Science & Applications, 2019, 8: 119.
|
| [24] |
Młyńczak J, Kopczyński K, Mierczyk Z, et al. Practical application of pulsed “eye-safe” microchip laser to laser rangefinders[J]. Opto-Electronics Review, 2013, 21(3): 332-337. doi: 10.2478/s11772-013-0098-2
|
| [25] |
Ban Xiaona, Hui Yongling, Lv Chong, et al. Double-ended bonded F2 glass/Er3+, Yb3+: glass/Co2+: MgAl2O4 passive Q-switched micro laser[J]. Optics Communications, 2022, 502: 127399.
|
| [26] |
Cobble J A, Johnson R P, Cowan T E, et al. High resolution laser-driven proton radiography[J]. Journal of Applied Physics, 2002, 92(4): 1775-1779. doi: 10.1063/1.1494128
|
| [27] |
Mackinnon A J, Patel P K, Borghesi M, et al. Proton radiography of a laser-driven implosion[J]. Physical Review Letters, 2006, 97: 045001. doi: 10.1103/PhysRevLett.97.045001
|
| [28] |
Barberio M, Scisciò M, Vallières S, et al. Laser-accelerated particle beams for stress testing of materials[J]. Nature Communications, 2018, 9: 372. doi: 10.1038/s41467-017-02675-x
|
| [29] |
Fourkal E, Velchev I, Ma C M. Coulomb explosion effect and the maximum energy of protons accelerated by high-power lasers[J]. Physical Review E, 2005, 71: 036412. doi: 10.1103/PhysRevE.71.036412
|
| [30] |
Grech M, Nuter R, Mikaberidze A, et al. Coulomb explosion of uniformly charged spheroids[J]. Physical Review E, 2011, 84: 056404. doi: 10.1103/PhysRevE.84.056404
|
| [31] |
Martinkova M, Kalal M, Rhee Y J. Coulomb explosions of deuterium clusters studied by compact design of Nomarski interferometer[J]. Journal of Physics: Conference Series, 2010, 244: 032053. doi: 10.1088/1742-6596/244/3/032053
|
| [32] |
Lv Chong, Chai Jialun, Ban Xiaona, et al. Study on the coupling and ion acceleration between ultraintense laser and multilayer solid targets[J]. The European Physical Journal D, 2025, 79: 3. doi: 10.1140/epjd/s10053-024-00950-3
|
| [33] |
Vetter K, Barnowksi R, Haefner A, et al. Gamma-Ray imaging for nuclear security and safety: towards 3-D gamma-ray vision[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 878: 159-168.
|
| [34] |
Laurent P, Rodriguez J, Wilms J, et al. Polarized gamma-ray emission from the galactic black hole Cygnus X-1[J]. Science, 2011, 332(6028): 438-439. doi: 10.1126/science.1200848
|
| [35] |
Uggerhøj U I. The interaction of relativistic particles with strong crystalline fields[J]. Reviews of Modern Physics, 2005, 77(4): 1131-1171. doi: 10.1103/RevModPhys.77.1131
|
| [36] |
Li Jianxing, Hatsagortsyan K Z, Galow B J, et al. Attosecond gamma-ray pulses via nonlinear Compton scattering in the radiation dominated regime[J]. Physical Review Letters, 2015, 115: 204801. doi: 10.1103/PhysRevLett.115.204801
|
| [37] |
Mackenroth F, Di Piazza A. Nonlinear double Compton scattering in the ultrarelativistic quantum regime[J]. Physical Review Letters, 2013, 110: 070402. doi: 10.1103/PhysRevLett.110.070402
|
| [38] |
Li Yanfei, Shaisultanov R, Chen Yueyue, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 2020, 124: 014801. doi: 10.1103/PhysRevLett.124.014801
|
| [39] |
Aleksandrov I A, Shabaev V M. Vacuum birefringence and dichroism in a strong plane-wave background[J]. Journal of Experimental and Theoretical Physics, 2024, 166(2): 182-193. doi: 10.31857/s0044451024080042
|
| [40] |
Lv Chong, Wan Feng, Salamin Y I, et al. Generation of high-brilliance polarized γ-rays via vacuum dichroism-assisted vacuum birefringence[J]. Advanced Science, 2025, 12: e17201.
|
| [41] |
Brandi F, Marsili P, Giammanco F, et al. Measurement of the particle number density in a pulsed flow gas cell with a second-harmonic interferometer[J]. Journal of Physics: Conference Series, 2018, 1079: 012006. doi: 10.1088/1742-6596/1079/1/012006
|
| [42] |
Wang W T, Li W T, Liu J S, et al. High-brightness high-energy electron beams from a laser Wakefield accelerator via energy chirp control[J]. Physical Review Letters, 2016, 117: 124801. doi: 10.1103/PhysRevLett.117.124801
|
| [43] |
Prencipe I, Fuchs J, Pascarelli S, et al. Targets for high repetition rate laser facilities: needs, challenges and perspectives[J]. High Power Laser Science and Engineering, 2017, 5: e17. doi: 10.1017/hpl.2017.18
|
| [44] |
Mirzaie M, Li S, Zeng M, et al. Demonstration of self-truncated ionization injection for GeV electron beams[J]. Scientific Reports, 2015, 5: 14659. doi: 10.1038/srep14659
|
| [45] |
Feister S, Nees J A, Morrison J T, et al. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments[J]. Review of Scientific Instruments, 2014, 85: 11D602. doi: 10.1063/1.4886955
|
| [46] |
Sylla F, Veltcheva M, Kahaly S, et al. Development and characterization of very dense submillimetric gas jets for laser-plasma interaction[J]. Review of Scientific Instruments, 2012, 83: 033507. doi: 10.1063/1.3697859
|
| [47] |
Henares J L, Puyuelo-Valdes P, Hannachi F, et al. Development of gas jet targets for laser-plasma experiments at near-critical density[J]. Review of Scientific Instruments, 2019, 90: 063302. doi: 10.1063/1.5093613
|
| [48] |
Zhao J R, Zhang X P, Yuan D W, et al. A novel laser-collider used to produce monoenergetic 13.3 MeV 7Li (d, n) neutrons[J]. Scientific Reports, 2016, 6: 27363. doi: 10.1038/srep27363
|
| [49] |
Liu X, Li Y T, Zhang Y, et al. Collisionless shockwaves formed by counter-streaming laser-produced plasmas[J]. New Journal of Physics, 2011, 13: 093001. doi: 10.1088/1367-2630/13/9/093001
|
| [50] |
Zhao J R, Zhang X P, Yuan D W, et al. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target[J]. Review of Scientific Instruments, 2015, 86: 063505. doi: 10.1063/1.4922912
|
| [51] |
Liu Qiushi, Ma Mingjiang, Zhang Xiaohua, et al. Application of Nomarski interference system in supersonic gas-jet target diagnosis[J]. AIP Advances, 2021, 11: 015145. doi: 10.1063/5.0027317
|
| [52] |
Liu Qiushi, Ma Mingjiang, Zhao Baozhen, et al. Effect of multiple parameters on the supersonic gas-jet target characteristics for laser wakefield acceleration[J]. Nuclear Science and Techniques, 2021, 32: 75. doi: 10.1007/s41365-021-00910-1
|
| [53] |
Rezac K, Klir D, Kubes P, et al. Improvement of time-of-flight methods for reconstruction of neutron energy spectra from D(d, n)3 He fusion reactions[J]. Plasma Physics and Controlled Fusion, 2012, 54: 105011. doi: 10.1088/0741-3335/54/10/105011
|
| [54] |
Glebov V Y, Forrest C, Knauer J P, et al. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA[J]. Review of Scientific Instruments, 2012, 83: 10D309. doi: 10.1063/1.4731001
|
| [55] |
Xi Xiaofeng, Zhang Guoqiang, Liu Fulong, et al. Direct calibration of neutron detectors for laser-driven nuclear reaction experiments with a gated neutron source[J]. Review of Scientific Instruments, 2023, 94: 013301. doi: 10.1063/5.0127101
|
| [56] |
席晓峰, 郭冰, 符长波, 等. 高功率激光驱动核反应研究进展与展望[J]. 原子能科学技术, 2023, 57(5): 865-887 doi: 10.7538/yzk.2023.youxian.0041
Xi Xiaofeng, Guo Bing, Fu Changbo, et al. Nuclear reactions driven by high-power laser: current status and prospects[J]. Atomic Energy Science and Technology, 2023, 57(5): 865-887 doi: 10.7538/yzk.2023.youxian.0041
|
| [57] |
Wang Wenzhao, Lv Chong, Zhang Xiaopeng, et al. First measurement of the 7Li(D, n) astrophysical S-factor in laser-induced full plasma[J]. Physics Letters B, 2023, 843: 138034. doi: 10.1016/j.physletb.2023.138034
|
| [58] |
Xi Xiaofeng, Lv Chong, Ma Wenjun, et al. Deuterium–deuterium fusion in nanowire plasma driven with a nanosecond high-energy laser[J]. Frontiers in Physics, 2023, 11: 1212293. doi: 10.3389/fphy.2023.1212293
|
| [59] |
Goriely S. Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis[J]. Physics Letters B, 1998, 436(1/2): 10-18. doi: 10.1016/s0370-2693(98)00907-1
|
| [60] |
Lattimer J M, Prakash M. Neutron star structure and the equation of state[J]. The Astrophysical Journal, 2001, 550(1): 426-442. doi: 10.1086/319702
|
| [61] |
Lu Zhiwei, Guo Liang, Li Zhengzheng, et al. Manipulation of giant multipole resonances via vortex γ photons[J]. Physical Review Letters, 2023, 131: 202502. doi: 10.1103/PhysRevLett.131.202502
|
| [62] |
张婉玉, 卢知为, 吕冲, 等. 涡旋γ光与微观核靶相互作用截面的理论研究[J]. 原子能科学技术, 2025, 59(12): 2593-2601
Zhang Wanyu, Lu Zhiwei, Lyu Chong, et al. Theoretical study for cross sections of interaction between vortex γ photons and mesoscopic nucleus target[J]. Atomic Energy Science and Technology, 2025, 59(12): 2593-2601
|
| [63] |
Tian Baoxian, Sun Wei, Gao Zhixing, et al. Multiple shock and acceleration processes of high-velocity flyers driven by the HEAVEN-I laser facility[J]. Physics of Plasmas, 2025, 31: 112701. doi: 10.1063/5.0221681
|
| [64] |
班晓娜, 杨为明, 张品亮, 等. 激光驱动靶丸超高速发射研究[J]. 原子能科学技术, 2021, 55(12): 2389-2395
Ban Xiaona, Yang Weiming, Zhang Pinliang, et al. Ultra-high speed launch of laser driven pellet[J]. Atomic Energy Science and Technology, 2021, 55(12): 2389-2395
|
| [65] |
He Hongyu, Gao Zhixing, Tian Heng, et al. Continuous emission monitoring the trace Sr from simulant aerosol emission with LIPS[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2024, 220: 107015. doi: 10.1016/j.sab.2024.107015
|
| [66] |
Wang Yuanhang, Tian Yuwei, Liu Cong, et al. High-sensitive detection of Li and Zn in aqueous solutions using capillary effect-enhanced laser-induced breakdown spectroscopy[J]. Talanta, 2025, 288: 127707. doi: 10.1016/j.talanta.2025.127707
|