Turn off MathJax
Article Contents
Li Zhanpeng, Lv Chong, Sun Wei, et al. Research on high-intensity laser physics at the China Institute of Atomic Energy and its applications in nuclear science[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250407
Citation: Li Zhanpeng, Lv Chong, Sun Wei, et al. Research on high-intensity laser physics at the China Institute of Atomic Energy and its applications in nuclear science[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250407

Research on high-intensity laser physics at the China Institute of Atomic Energy and its applications in nuclear science

doi: 10.11884/HPLPB202638.250407
  • Received Date: 2025-11-14
  • Accepted Date: 2025-12-23
  • Rev Recd Date: 2025-01-09
  • Available Online: 2026-02-07
  • High-intensity laser technology, based on chirped pulse amplification, produces extreme optical fields on ultrashort timescales, providing a powerful platform for studying strong-field quantum electrodynamics, laser-plasma interactions, and extreme nuclear environments. This review summarizes the major progress made by the Laser Nuclear Physics Research Team at the Department of Nuclear Physics, China Institute of Atomic Energy, in developing petawatt-class laser systems, theoretical modeling, diagnostic techniques, and applications in nuclear science and industry. The team successfully commissioned a 100 TW ultrafast ultra-intense laser facility in 2023, featuring advanced high-contrast pulse shaping through cross-polarized wave generation and spectral broadening techniques. Additional innovations include thermally optimized eye-safe micro-lasers with improved bonding structures. Theoretical efforts used particle-in-cell simulations to enhance ion acceleration via Coulomb explosion in multilayer targets, achieving high-quality quasi-monoenergetic proton beams under optimized dual-pulse configurations. A novel approach for generating bright circularly polarized γ-rays was proposed, exploiting vacuum dichroism-assisted vacuum birefringence effects. Diagnostic advancements involved refined Nomarski interferometry for precise gas-jet target profiling and fission-source-gated methods for accurate neutron detector calibration. Key applications encompass plasma-based measurements of astrophysical nuclear reaction factors, vortex γ-photon manipulation of nuclear multipole resonances, laser-driven flyer acceleration for high-pressure equation-of-state studies, and enhanced laser-induced breakdown spectroscopy for trace element monitoring in nuclear facilities. These achievements facilitate simulation of stellar nuclear synthesis, advanced radiation sources, materials testing under extreme conditions, and nuclear safety monitoring, laying the foundation for future compact, high-repetition-rate laser systems in energy security and frontier nuclear research.
  • loading
  • [1]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [2]
    Bulgakov A V, Ryabchikov Y V, Levy Y, et al. The roadmap of new capabilities of high-intensity lasers in material design and manipulation[DB/OL]. arXiv preprint arXiv: 2509.17662, 2025.
    [3]
    谷渝秋. 超热电子输运及相关现象研究[D]. 北京: 中国工程物理研究院, 2004

    Gu Yuqiu. Studies on hot electron transportation and its correlative phenomenons[D]. Beijing: China Institute of Engineering Physics, 2004
    [4]
    Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
    [5]
    Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [6]
    胡艳婷, 张昊, 邓宏祥, 等. 激光驱动离子加速的研究进展及其重要应用综述[J]. 中国激光, 2021, 48: 0401006 doi: 10.3788/CJL202148.0401006

    Hu Yanting, Zhang Hao, Deng Hongxiang, et al. Review of research developments and important applications of laser-driven ion acceleration[J]. Chinese Journal of Lasers, 2021, 48: 0401006 doi: 10.3788/CJL202148.0401006
    [7]
    Shen X F, Pukhov A, Qiao B. Monoenergetic high-energy ion source via femtosecond laser interacting with a microtape[J]. Physical Review X, 2021, 11: 041002. doi: 10.1103/physrevx.11.041002
    [8]
    Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction[J]. Reviews of Modern Physics, 2013, 85(2): 751-793. doi: 10.1103/RevModPhys.85.751
    [9]
    Roth M, Jung D, Falk K, et al. Bright laser-driven neutron source based on the relativistic transparency of solids[J]. Physical Review Letters, 2013, 110: 044802. doi: 10.1103/PhysRevLett.110.044802
    [10]
    齐伟, 贺书凯, 崔波, 等. 超短脉冲激光驱动束靶中子源产生及应用研究进展(特邀)[J]. 中国激光, 2024, 51: 0101004 doi: 10.3788/CJL231292

    Qi Wei, He Shukai, Cui Bo, et al. Research progress of beam-target neutron source and applications driven by ultra-short pulse lasers (invited)[J]. Chinese Journal of Lasers, 2024, 51: 0101004 doi: 10.3788/CJL231292
    [11]
    Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
    [12]
    Corde S, Phuoc K T, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [13]
    Chen H, Wilks S C, Bonlie J D, et al. Making relativistic positrons using ultraintense short pulse lasers[J]. Physics of Plasmas, 2009, 16: 122702. doi: 10.1063/1.3271355
    [14]
    朱兴龙, 王伟民, 余同普, 等. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展[J]. 物理学报, 2021, 70: 085202 doi: 10.7498/aps.70.20202224

    Zhu Xinglong, Wang Weimin, Yu Tongpu, et al. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields[J]. Acta Physica Sinica, 2021, 70: 085202 doi: 10.7498/aps.70.20202224
    [15]
    Zhang Feng, Deng Li, Ge Yanjie, et al. Proof-of-principle demonstration of muon production with an ultrashort high-intensity laser[J]. Nature Physics, 2025, 21(7): 1050-1056. doi: 10.1038/s41567-025-02872-2
    [16]
    Zhang Chuankun, Ooi T, Higgins J S, et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock[J]. Nature, 2024, 633(8028): 63-70. doi: 10.1038/s41586-024-07839-6
    [17]
    Tiedau J, Okhapkin M V, Zhang K, et al. Laser Excitation of the Th-229 Nucleus[J]. Physical Review Letters, 2024, 132: 182501. doi: 10.1103/PhysRevLett.132.182501
    [18]
    Strickland D. Nobel lecture: generating high-intensity ultrashort optical pulses[J]. Reviews of Modern Physics, 2019, 91: 030502. doi: 10.1103/RevModPhys.91.030502
    [19]
    Mourou G. Nobel lecture: extreme light physics and application[J]. Reviews of Modern Physics, 2019, 91: 030501. doi: 10.1103/RevModPhys.91.030501
    [20]
    王钊, 贺创业, 赵保真, 等. 中国原子能科学研究院激光技术发展及其在核科学中的应用[J]. 原子能科学技术, 2020, 54(s1): 47-64 doi: 10.7538/yzk.2020.zhuankan.0403

    Wang Zhao, He Chuangye, Zhao Baozhen, et al. Development of laser technology and its application in nuclear science at CIAE[J]. Atomic Energy Science and Technology, 2020, 54(s1): 47-64 doi: 10.7538/yzk.2020.zhuankan.0403
    [21]
    Zhao Baozhen, Zhang Xiaohua, Lv Chong, et al. Improved cross polarized wave generation with an aperture[J]. AIP Advances, 2022, 12: 055128. doi: 10.1063/5.0090066
    [22]
    Zhao Baozhen, Zhang Xiaohua, Lv Chong, et al. Broadband spectral shaping of regenerative amplification with extra-cavity waveplate for cross polarized wave generation[J]. Applied Sciences, 2022, 12: 5521. doi: 10.3390/app12115521
    [23]
    Zhang Xiang, Fincke J R, Wynn C M, et al. Full noncontact laser ultrasound: first human data[J]. Light: Science & Applications, 2019, 8: 119.
    [24]
    Młyńczak J, Kopczyński K, Mierczyk Z, et al. Practical application of pulsed “eye-safe” microchip laser to laser rangefinders[J]. Opto-Electronics Review, 2013, 21(3): 332-337. doi: 10.2478/s11772-013-0098-2
    [25]
    Ban Xiaona, Hui Yongling, Lv Chong, et al. Double-ended bonded F2 glass/Er3+, Yb3+: glass/Co2+: MgAl2O4 passive Q-switched micro laser[J]. Optics Communications, 2022, 502: 127399.
    [26]
    Cobble J A, Johnson R P, Cowan T E, et al. High resolution laser-driven proton radiography[J]. Journal of Applied Physics, 2002, 92(4): 1775-1779. doi: 10.1063/1.1494128
    [27]
    Mackinnon A J, Patel P K, Borghesi M, et al. Proton radiography of a laser-driven implosion[J]. Physical Review Letters, 2006, 97: 045001. doi: 10.1103/PhysRevLett.97.045001
    [28]
    Barberio M, Scisciò M, Vallières S, et al. Laser-accelerated particle beams for stress testing of materials[J]. Nature Communications, 2018, 9: 372. doi: 10.1038/s41467-017-02675-x
    [29]
    Fourkal E, Velchev I, Ma C M. Coulomb explosion effect and the maximum energy of protons accelerated by high-power lasers[J]. Physical Review E, 2005, 71: 036412. doi: 10.1103/PhysRevE.71.036412
    [30]
    Grech M, Nuter R, Mikaberidze A, et al. Coulomb explosion of uniformly charged spheroids[J]. Physical Review E, 2011, 84: 056404. doi: 10.1103/PhysRevE.84.056404
    [31]
    Martinkova M, Kalal M, Rhee Y J. Coulomb explosions of deuterium clusters studied by compact design of Nomarski interferometer[J]. Journal of Physics: Conference Series, 2010, 244: 032053. doi: 10.1088/1742-6596/244/3/032053
    [32]
    Lv Chong, Chai Jialun, Ban Xiaona, et al. Study on the coupling and ion acceleration between ultraintense laser and multilayer solid targets[J]. The European Physical Journal D, 2025, 79: 3. doi: 10.1140/epjd/s10053-024-00950-3
    [33]
    Vetter K, Barnowksi R, Haefner A, et al. Gamma-Ray imaging for nuclear security and safety: towards 3-D gamma-ray vision[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 878: 159-168.
    [34]
    Laurent P, Rodriguez J, Wilms J, et al. Polarized gamma-ray emission from the galactic black hole Cygnus X-1[J]. Science, 2011, 332(6028): 438-439. doi: 10.1126/science.1200848
    [35]
    Uggerhøj U I. The interaction of relativistic particles with strong crystalline fields[J]. Reviews of Modern Physics, 2005, 77(4): 1131-1171. doi: 10.1103/RevModPhys.77.1131
    [36]
    Li Jianxing, Hatsagortsyan K Z, Galow B J, et al. Attosecond gamma-ray pulses via nonlinear Compton scattering in the radiation dominated regime[J]. Physical Review Letters, 2015, 115: 204801. doi: 10.1103/PhysRevLett.115.204801
    [37]
    Mackenroth F, Di Piazza A. Nonlinear double Compton scattering in the ultrarelativistic quantum regime[J]. Physical Review Letters, 2013, 110: 070402. doi: 10.1103/PhysRevLett.110.070402
    [38]
    Li Yanfei, Shaisultanov R, Chen Yueyue, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 2020, 124: 014801. doi: 10.1103/PhysRevLett.124.014801
    [39]
    Aleksandrov I A, Shabaev V M. Vacuum birefringence and dichroism in a strong plane-wave background[J]. Journal of Experimental and Theoretical Physics, 2024, 166(2): 182-193. doi: 10.31857/s0044451024080042
    [40]
    Lv Chong, Wan Feng, Salamin Y I, et al. Generation of high-brilliance polarized γ-rays via vacuum dichroism-assisted vacuum birefringence[J]. Advanced Science, 2025, 12: e17201.
    [41]
    Brandi F, Marsili P, Giammanco F, et al. Measurement of the particle number density in a pulsed flow gas cell with a second-harmonic interferometer[J]. Journal of Physics: Conference Series, 2018, 1079: 012006. doi: 10.1088/1742-6596/1079/1/012006
    [42]
    Wang W T, Li W T, Liu J S, et al. High-brightness high-energy electron beams from a laser Wakefield accelerator via energy chirp control[J]. Physical Review Letters, 2016, 117: 124801. doi: 10.1103/PhysRevLett.117.124801
    [43]
    Prencipe I, Fuchs J, Pascarelli S, et al. Targets for high repetition rate laser facilities: needs, challenges and perspectives[J]. High Power Laser Science and Engineering, 2017, 5: e17. doi: 10.1017/hpl.2017.18
    [44]
    Mirzaie M, Li S, Zeng M, et al. Demonstration of self-truncated ionization injection for GeV electron beams[J]. Scientific Reports, 2015, 5: 14659. doi: 10.1038/srep14659
    [45]
    Feister S, Nees J A, Morrison J T, et al. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments[J]. Review of Scientific Instruments, 2014, 85: 11D602. doi: 10.1063/1.4886955
    [46]
    Sylla F, Veltcheva M, Kahaly S, et al. Development and characterization of very dense submillimetric gas jets for laser-plasma interaction[J]. Review of Scientific Instruments, 2012, 83: 033507. doi: 10.1063/1.3697859
    [47]
    Henares J L, Puyuelo-Valdes P, Hannachi F, et al. Development of gas jet targets for laser-plasma experiments at near-critical density[J]. Review of Scientific Instruments, 2019, 90: 063302. doi: 10.1063/1.5093613
    [48]
    Zhao J R, Zhang X P, Yuan D W, et al. A novel laser-collider used to produce monoenergetic 13.3 MeV 7Li (d, n) neutrons[J]. Scientific Reports, 2016, 6: 27363. doi: 10.1038/srep27363
    [49]
    Liu X, Li Y T, Zhang Y, et al. Collisionless shockwaves formed by counter-streaming laser-produced plasmas[J]. New Journal of Physics, 2011, 13: 093001. doi: 10.1088/1367-2630/13/9/093001
    [50]
    Zhao J R, Zhang X P, Yuan D W, et al. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target[J]. Review of Scientific Instruments, 2015, 86: 063505. doi: 10.1063/1.4922912
    [51]
    Liu Qiushi, Ma Mingjiang, Zhang Xiaohua, et al. Application of Nomarski interference system in supersonic gas-jet target diagnosis[J]. AIP Advances, 2021, 11: 015145. doi: 10.1063/5.0027317
    [52]
    Liu Qiushi, Ma Mingjiang, Zhao Baozhen, et al. Effect of multiple parameters on the supersonic gas-jet target characteristics for laser wakefield acceleration[J]. Nuclear Science and Techniques, 2021, 32: 75. doi: 10.1007/s41365-021-00910-1
    [53]
    Rezac K, Klir D, Kubes P, et al. Improvement of time-of-flight methods for reconstruction of neutron energy spectra from D(d, n)3 He fusion reactions[J]. Plasma Physics and Controlled Fusion, 2012, 54: 105011. doi: 10.1088/0741-3335/54/10/105011
    [54]
    Glebov V Y, Forrest C, Knauer J P, et al. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA[J]. Review of Scientific Instruments, 2012, 83: 10D309. doi: 10.1063/1.4731001
    [55]
    Xi Xiaofeng, Zhang Guoqiang, Liu Fulong, et al. Direct calibration of neutron detectors for laser-driven nuclear reaction experiments with a gated neutron source[J]. Review of Scientific Instruments, 2023, 94: 013301. doi: 10.1063/5.0127101
    [56]
    席晓峰, 郭冰, 符长波, 等. 高功率激光驱动核反应研究进展与展望[J]. 原子能科学技术, 2023, 57(5): 865-887 doi: 10.7538/yzk.2023.youxian.0041

    Xi Xiaofeng, Guo Bing, Fu Changbo, et al. Nuclear reactions driven by high-power laser: current status and prospects[J]. Atomic Energy Science and Technology, 2023, 57(5): 865-887 doi: 10.7538/yzk.2023.youxian.0041
    [57]
    Wang Wenzhao, Lv Chong, Zhang Xiaopeng, et al. First measurement of the 7Li(D, n) astrophysical S-factor in laser-induced full plasma[J]. Physics Letters B, 2023, 843: 138034. doi: 10.1016/j.physletb.2023.138034
    [58]
    Xi Xiaofeng, Lv Chong, Ma Wenjun, et al. Deuterium–deuterium fusion in nanowire plasma driven with a nanosecond high-energy laser[J]. Frontiers in Physics, 2023, 11: 1212293. doi: 10.3389/fphy.2023.1212293
    [59]
    Goriely S. Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis[J]. Physics Letters B, 1998, 436(1/2): 10-18. doi: 10.1016/s0370-2693(98)00907-1
    [60]
    Lattimer J M, Prakash M. Neutron star structure and the equation of state[J]. The Astrophysical Journal, 2001, 550(1): 426-442. doi: 10.1086/319702
    [61]
    Lu Zhiwei, Guo Liang, Li Zhengzheng, et al. Manipulation of giant multipole resonances via vortex γ photons[J]. Physical Review Letters, 2023, 131: 202502. doi: 10.1103/PhysRevLett.131.202502
    [62]
    张婉玉, 卢知为, 吕冲, 等. 涡旋γ光与微观核靶相互作用截面的理论研究[J]. 原子能科学技术, 2025, 59(12): 2593-2601

    Zhang Wanyu, Lu Zhiwei, Lyu Chong, et al. Theoretical study for cross sections of interaction between vortex γ photons and mesoscopic nucleus target[J]. Atomic Energy Science and Technology, 2025, 59(12): 2593-2601
    [63]
    Tian Baoxian, Sun Wei, Gao Zhixing, et al. Multiple shock and acceleration processes of high-velocity flyers driven by the HEAVEN-I laser facility[J]. Physics of Plasmas, 2025, 31: 112701. doi: 10.1063/5.0221681
    [64]
    班晓娜, 杨为明, 张品亮, 等. 激光驱动靶丸超高速发射研究[J]. 原子能科学技术, 2021, 55(12): 2389-2395

    Ban Xiaona, Yang Weiming, Zhang Pinliang, et al. Ultra-high speed launch of laser driven pellet[J]. Atomic Energy Science and Technology, 2021, 55(12): 2389-2395
    [65]
    He Hongyu, Gao Zhixing, Tian Heng, et al. Continuous emission monitoring the trace Sr from simulant aerosol emission with LIPS[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2024, 220: 107015. doi: 10.1016/j.sab.2024.107015
    [66]
    Wang Yuanhang, Tian Yuwei, Liu Cong, et al. High-sensitive detection of Li and Zn in aqueous solutions using capillary effect-enhanced laser-induced breakdown spectroscopy[J]. Talanta, 2025, 288: 127707. doi: 10.1016/j.talanta.2025.127707
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (17) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return