Turn off MathJax
Article Contents
Kou Yuhan, Ababekri Mamutjan, Huang Yaqing, et al. Study on manipulation mechanism of polarized positrons in nonlinear Breit-Wheeler scattering process[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250410
Citation: Kou Yuhan, Ababekri Mamutjan, Huang Yaqing, et al. Study on manipulation mechanism of polarized positrons in nonlinear Breit-Wheeler scattering process[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250410

Study on manipulation mechanism of polarized positrons in nonlinear Breit-Wheeler scattering process

doi: 10.11884/HPLPB202638.250410
  • Received Date: 2025-11-18
  • Accepted Date: 2026-01-06
  • Rev Recd Date: 2025-12-20
  • Available Online: 2026-01-30
  • Background
    Polarized positron beams are vital probes in fundamental physics. Generating them via the nonlinear Breit-Wheeler process in laser fields is a promising new approach, but control over the positron polarization requires further understanding.
    Purpose
    This study investigates how laser and γ-photon parameters control the final polarization of positrons in this process.
    Methods
    Within strong-field QED, we fully include all particle spins and the laser pulse's finite envelope. Systematic calculations are performed across various laser intensities, γ-photon energies, and polarization configurations.
    Results
    Key findings are: (1) No positron polarization arises with linearly polarized lasers and γ-photons. (2) When only one is circularly polarized, it dominates the positron polarization, which decreases with higher laser intensity or γ-photon energy. (3) With both circularly polarized, γ-photons dominate high-energy positron polarization, while both sources co-determine low-energy positron polarization, with laser intensity playing a stronger regulatory role.
    Conclusions
    These results clarify the dominant factors for positron polarization, providing a key theoretical basis for designing optimized laser-driven polarized positron sources.
  • loading
  • [1]
    Zitzewitz P W, Van House J C, Rich A, et al. Spin polarization of low-energy positron beams[J]. Physical Review Letters, 1979, 43(18): 1281-1284. doi: 10.1103/PhysRevLett.43.1281
    [2]
    Gidley D W, Köymen A R, Capehart T W. Polarized low-energy positrons: a new probe of surface magnetism[J]. Physical Review Letters, 1982, 49(24): 1779-1783. doi: 10.1103/PhysRevLett.49.1779
    [3]
    Rich A, Van House J, Gidley D W, et al. Spin-polarized low-energy positron beams and their applications[J]. Applied Physics A, 1987, 43(4): 275-281. doi: 10.1007/BF00635183
    [4]
    Novak O P, Kholodov R I. Spin-polarization effects in the processes of synchrotron radiation and electron-positron pair production by a photon in a magnetic field[J]. Physical Review D, 2009, 80: 025025. doi: 10.1103/PhysRevD.80.025025
    [5]
    Ruffini R, Vereshchagin G, Xue Shesheng. Electron–positron pairs in physics and astrophysics: from heavy nuclei to black holes[J]. Physics Reports, 2010, 487(1/4): 1-140. doi: 10.1016/j.physrep.2009.10.004
    [6]
    Moortgat-Pick G, Abe T, Alexander G, et al. Polarized positrons and electrons at the linear collider[J]. Physics Reports, 2008, 460(4/5): 131-243.
    [7]
    Dietrich F, Moortgat-Pick G, Riemann S, et al. Status of the undulator-based ILC positron source[DB/OL]. arXiv preprint arXiv: 1902.07744, 2019.
    [8]
    Mane S R, Shatunov Y M, Yokoya K. Spin-polarized charged particle beams in high-energy accelerators[J]. Reports on Progress in Physics, 2005, 68(9): 1997-2265. doi: 10.1088/0034-4885/68/9/R01
    [9]
    Dumas J, Grames J, Voutier E. Polarized positrons at Jefferson Lab[J]. AIP Conference Proceedings, 2009, 1149(1): 1184-1188.
    [10]
    Abbott D, Adderley P, Adeyemi A, et al. Production of highly polarized positrons using polarized electrons at MeV energies[J]. Physical Review Letters, 2016, 116: 214801. doi: 10.1103/PhysRevLett.116.214801
    [11]
    Sun Ting, Zhao Qian, Xue Kun, et al. Production of polarized particle beams via ultraintense laser pulses[J]. Reviews of Modern Plasma Physics, 2022, 6: 38. doi: 10.1007/s41614-022-00099-9
    [12]
    Chen Yueyue, He Peilun, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Physical Review Letters, 2019, 123: 174801. doi: 10.1103/PhysRevLett.123.174801
    [13]
    Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 2020, 125: 044802. doi: 10.1103/PhysRevLett.125.044802
    [14]
    Song Huaihang, Wang Weimin, Li Yutong. Dense polarized positrons from laser-irradiated foil targets in the QED regime[J]. Physical Review Letters, 2022, 129: 035001. doi: 10.1103/PhysRevLett.129.035001
    [15]
    Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
    [16]
    Fedotov A, Ilderton A, Karbstein F, et al. Advances in QED with intense background fields[J]. Physics Reports, 2023, 1010: 1-138.
    [17]
    Wan Feng, Shaisultanov R, Li Yanfei, et al. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams[J]. Physics Letters B, 2020, 800: 135120. doi: 10.1016/j.physletb.2019.135120
    [18]
    Titov A I, Takabe H, Kämpfer B, et al. Enhanced subthreshold e+ e production in short laser pulses[J]. Physical Review Letters, 2012, 108: 240406. doi: 10.1103/PhysRevLett.108.240406
    [19]
    Dai Yanan, Shen Baifei, Li Jianxing, et al. Photon polarization effects in polarized electron-positron pair production in a strong laser field[J]. Matter and Radiation at Extremes, 2022, 7: 014401. doi: 10.1063/5.0063633
    [20]
    Seipt D, King B. Spin- and polarization-dependent locally-constant-field-approximation rates for nonlinear Compton and Breit-Wheeler processes[J]. Physical Review A, 2020, 102: 052805. doi: 10.1103/PhysRevA.102.052805
    [21]
    Ivanov D Y, Kotkin G L, Serbo V G. Complete description of polarization effects in e+ e pair production by a photon in the field of a strong laser wave[J]. The European Physical Journal C - Particles and Fields, 2005, 40(1): 27-40. doi: 10.1140/epjc/s2005-02125-1
    [22]
    Wistisen T N. Numerical approach to the semiclassical method of pair production for arbitrary spins and photon polarization[J]. Physical Review D, 2020, 101: 076017. doi: 10.1103/PhysRevD.101.076017
    [23]
    Tang Suo. Fully polarized nonlinear Breit-Wheeler pair production in pulsed plane waves[J]. Physical Review D, 2022, 105: 056018. doi: 10.1103/PhysRevD.105.056018
    [24]
    Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
    [25]
    Blackburn T G, King B. Higher fidelity simulations of nonlinear Breit–Wheeler pair creation in intense laser pulses[J]. The European Physical Journal C, 2022, 82: 44. doi: 10.1140/epjc/s10052-021-09955-3
    [26]
    Mackenroth K F. Quantum radiation in ultra-intense laser pulses[M]. Cham: Springer, 2014.
    [27]
    Heinzl T, Ilderton A, Marklund M. Finite size effects in stimulated laser pair production[J]. Physics Letters B, 2010, 692(4): 250-256. doi: 10.1016/j.physletb.2010.07.044
    [28]
    Jiang Jingjing, Dai Yanan, Zhuang Kaihong, et al. Interferences effects in the polarized nonlinear Breit-Wheeler process[J]. Physical Review D, 2024, 109: 036030. doi: 10.1103/PhysRevD.109.036030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (12) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return