| Citation: | Kou Yuhan, Ababekri Mamutjan, Huang Yaqing, et al. Study on manipulation mechanism of polarized positrons in nonlinear Breit-Wheeler scattering process[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250410 |
| [1] |
Zitzewitz P W, Van House J C, Rich A, et al. Spin polarization of low-energy positron beams[J]. Physical Review Letters, 1979, 43(18): 1281-1284. doi: 10.1103/PhysRevLett.43.1281
|
| [2] |
Gidley D W, Köymen A R, Capehart T W. Polarized low-energy positrons: a new probe of surface magnetism[J]. Physical Review Letters, 1982, 49(24): 1779-1783. doi: 10.1103/PhysRevLett.49.1779
|
| [3] |
Rich A, Van House J, Gidley D W, et al. Spin-polarized low-energy positron beams and their applications[J]. Applied Physics A, 1987, 43(4): 275-281. doi: 10.1007/BF00635183
|
| [4] |
Novak O P, Kholodov R I. Spin-polarization effects in the processes of synchrotron radiation and electron-positron pair production by a photon in a magnetic field[J]. Physical Review D, 2009, 80: 025025. doi: 10.1103/PhysRevD.80.025025
|
| [5] |
Ruffini R, Vereshchagin G, Xue Shesheng. Electron–positron pairs in physics and astrophysics: from heavy nuclei to black holes[J]. Physics Reports, 2010, 487(1/4): 1-140. doi: 10.1016/j.physrep.2009.10.004
|
| [6] |
Moortgat-Pick G, Abe T, Alexander G, et al. Polarized positrons and electrons at the linear collider[J]. Physics Reports, 2008, 460(4/5): 131-243.
|
| [7] |
Dietrich F, Moortgat-Pick G, Riemann S, et al. Status of the undulator-based ILC positron source[DB/OL]. arXiv preprint arXiv: 1902.07744, 2019.
|
| [8] |
Mane S R, Shatunov Y M, Yokoya K. Spin-polarized charged particle beams in high-energy accelerators[J]. Reports on Progress in Physics, 2005, 68(9): 1997-2265. doi: 10.1088/0034-4885/68/9/R01
|
| [9] |
Dumas J, Grames J, Voutier E. Polarized positrons at Jefferson Lab[J]. AIP Conference Proceedings, 2009, 1149(1): 1184-1188.
|
| [10] |
Abbott D, Adderley P, Adeyemi A, et al. Production of highly polarized positrons using polarized electrons at MeV energies[J]. Physical Review Letters, 2016, 116: 214801. doi: 10.1103/PhysRevLett.116.214801
|
| [11] |
Sun Ting, Zhao Qian, Xue Kun, et al. Production of polarized particle beams via ultraintense laser pulses[J]. Reviews of Modern Plasma Physics, 2022, 6: 38. doi: 10.1007/s41614-022-00099-9
|
| [12] |
Chen Yueyue, He Peilun, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Physical Review Letters, 2019, 123: 174801. doi: 10.1103/PhysRevLett.123.174801
|
| [13] |
Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 2020, 125: 044802. doi: 10.1103/PhysRevLett.125.044802
|
| [14] |
Song Huaihang, Wang Weimin, Li Yutong. Dense polarized positrons from laser-irradiated foil targets in the QED regime[J]. Physical Review Letters, 2022, 129: 035001. doi: 10.1103/PhysRevLett.129.035001
|
| [15] |
Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
|
| [16] |
Fedotov A, Ilderton A, Karbstein F, et al. Advances in QED with intense background fields[J]. Physics Reports, 2023, 1010: 1-138.
|
| [17] |
Wan Feng, Shaisultanov R, Li Yanfei, et al. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams[J]. Physics Letters B, 2020, 800: 135120. doi: 10.1016/j.physletb.2019.135120
|
| [18] |
Titov A I, Takabe H, Kämpfer B, et al. Enhanced subthreshold e+ e− production in short laser pulses[J]. Physical Review Letters, 2012, 108: 240406. doi: 10.1103/PhysRevLett.108.240406
|
| [19] |
Dai Yanan, Shen Baifei, Li Jianxing, et al. Photon polarization effects in polarized electron-positron pair production in a strong laser field[J]. Matter and Radiation at Extremes, 2022, 7: 014401. doi: 10.1063/5.0063633
|
| [20] |
Seipt D, King B. Spin- and polarization-dependent locally-constant-field-approximation rates for nonlinear Compton and Breit-Wheeler processes[J]. Physical Review A, 2020, 102: 052805. doi: 10.1103/PhysRevA.102.052805
|
| [21] |
Ivanov D Y, Kotkin G L, Serbo V G. Complete description of polarization effects in e+ e− pair production by a photon in the field of a strong laser wave[J]. The European Physical Journal C - Particles and Fields, 2005, 40(1): 27-40. doi: 10.1140/epjc/s2005-02125-1
|
| [22] |
Wistisen T N. Numerical approach to the semiclassical method of pair production for arbitrary spins and photon polarization[J]. Physical Review D, 2020, 101: 076017. doi: 10.1103/PhysRevD.101.076017
|
| [23] |
Tang Suo. Fully polarized nonlinear Breit-Wheeler pair production in pulsed plane waves[J]. Physical Review D, 2022, 105: 056018. doi: 10.1103/PhysRevD.105.056018
|
| [24] |
Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
|
| [25] |
Blackburn T G, King B. Higher fidelity simulations of nonlinear Breit–Wheeler pair creation in intense laser pulses[J]. The European Physical Journal C, 2022, 82: 44. doi: 10.1140/epjc/s10052-021-09955-3
|
| [26] |
Mackenroth K F. Quantum radiation in ultra-intense laser pulses[M]. Cham: Springer, 2014.
|
| [27] |
Heinzl T, Ilderton A, Marklund M. Finite size effects in stimulated laser pair production[J]. Physics Letters B, 2010, 692(4): 250-256. doi: 10.1016/j.physletb.2010.07.044
|
| [28] |
Jiang Jingjing, Dai Yanan, Zhuang Kaihong, et al. Interferences effects in the polarized nonlinear Breit-Wheeler process[J]. Physical Review D, 2024, 109: 036030. doi: 10.1103/PhysRevD.109.036030
|