Turn off MathJax
Article Contents
Wan Yang, Li Chuanke, Peng Bo, et al. Ultrafast and ultraintense laser facility at Zhengzhou University: Recent progress[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250412
Citation: Wan Yang, Li Chuanke, Peng Bo, et al. Ultrafast and ultraintense laser facility at Zhengzhou University: Recent progress[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250412

Ultrafast and ultraintense laser facility at Zhengzhou University: Recent progress

doi: 10.11884/HPLPB202638.250412
  • Received Date: 2025-11-19
  • Accepted Date: 2025-12-10
  • Rev Recd Date: 2025-12-16
  • Available Online: 2025-12-26
  • The emergence and rapid advancement of ultrafast and ultraintense lasers have created unprecedented extreme physical conditions and novel experimental methods, significantly deepening and expanding our understanding of the laws governing the objective world. These developments have greatly promoted innovation in basic and frontier interdisciplinary fields as well as strategic high technology areas. Particle acceleration using the interaction of ultrafast and ultraintense lasers with plasmas is regarded as a next-generation technology for accelerators and radiation sources. It offers the potential to shrink the footprint of conventional accelerator facilities by two orders of magnitude. This dramatic reduction in size greatly expands the applicability of accelerator and radiation source technologies in industry, national defense, medicine, and scientific research, enabling transformative possibilities such as precision nondestructive testing of critical components, ultralow dose and high precision tumor diagnostics, novel low damage radiotherapy methods, and tabletop ultrafast light sources. The ultrafast and ultraintense laser platform at Zhengzhou University introduced in this paper is precisely such a next-generation facility dedicated to advanced laser accelerator research and applications. In addition, this article provides a systematic review of the significant progress achieved by Zhengzhou University in recent years in strong-field physics and advanced accelerator science.
  • loading
  • [1]
    Perry M D, Mourou G. Terawatt to petawatt subpicosecond lasers[J]. Science, 1994, 264(5161): 917-924. doi: 10.1126/science.264.5161.917
    [2]
    李儒新, 冷雨欣, 徐至展. 超强超短激光及其应用新进展[J]. 物理, 2015, 44(8): 509-517 doi: 10.7693/wl20150804

    Li Ruxin, Leng Yuxin, Xu Zhizhan. Progress in superintense ultrafast lasers and their applications[J]. Physics, 2015, 44(8): 509-517 doi: 10.7693/wl20150804
    [3]
    Kiriyama H, Mori M, Pirozhkov A S, et al. High-contrast, high-intensity petawatt-class laser and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 1601118.
    [4]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
    [5]
    Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
    [6]
    Botner O, Ingelman G, Irbäck A, et al. The Nobel committee for physics[Z]. The Nobel Prize in Physics 2018: Popular Science Background, 2018: 1-7.
    [7]
    Mourou G A, Korn G, Sandner W, et al. ELI white book: science and technology with ultra-intense lasers[R]. Berlin: THOSS Media GmbH, 2011.
    [8]
    Hernandez-Gomez C. Overview of the central laser facility (CLF)[R]. Didcot: CLF, 2016-2017: 6-8.
    [9]
    Papadopoulos D N, Zou J P, Le Blanc C, et al. The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics[J]. High Power Laser Science and Engineering, 2016, 4: e34. doi: 10.1017/hpl.2016.34
    [10]
    Khazanov E, Shaykin A, Kostyukov I, et al. eXawatt center for extreme light studies[J]. High Power Laser Science and Engineering, 2023, 11: e78. doi: 10.1017/hpl.2023.69
    [11]
    Bromage J, Bahk S W, Bedzyk M, et al. MTW-OPAL: a technology development platform for ultra-intense optical parametric chirped-pulse amplification systems[J]. High Power Laser Science and Engineering, 2021, 9: e63. doi: 10.1017/hpl.2021.45
    [12]
    . http://sulf.siom.ac.cn/.
    [13]
    上海超强超短激光实验装置研制进展——专访中国科学院上海光学精密机械研究所李儒新院士[J]. 强激光与粒子束, 2020, 32: 011002

    Development progress of Shanghai superintense ultrafast lasers facility[J]. High Power Laser and Particle Beams, 2020, 32: 011002
    [14]
    Li Hongyang, Liu Keyang, Wang Xinliang, et al. Timing fluctuation correction for the front end of a 100-PW laser[J]. High Power Laser Science and Engineering, 2023, 11: e52. doi: 10.1017/hpl.2023.41
    [15]
    彭宇杰, 许毅, 於亮红, 等. 上海超强超短激光实验装置研制进展[J]. 中国激光, 2024, 51: 1101002

    Peng Yujie, Xu Yi, Yu Lianghong, et al. Review on development of shanghai super-intense ultra-fast laser facility[J]. Chinese Journal of Lasers, 2024, 51: 1101002
    [16]
    陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32: 092001

    Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001
    [17]
    Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
    [18]
    Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [19]
    Malka V, Faure J, Gauduel Y, et al. Principles and applications of compact laser–plasma accelerators[J]. Nature Physics, 2008, 4(6): 447-453. doi: 10.1038/nphys966
    [20]
    Rousse A, Ta Phuoc K, Shah R, et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction[J]. Physical Review Letters, 2004, 93: 135005. doi: 10.1103/PhysRevLett.93.135005
    [21]
    Kneip S, McGuey C, Martins J L, et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Physics, 2010, 6(12): 980-983. doi: 10.1038/nphys1789
    [22]
    Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [23]
    谢波, 张晓辉, 李天月, 等. 拍瓦飞秒激光与近临界密度等离子体相互作用的电子加速及betatron辐射产生数值模拟[J]. 强激光与粒子束, 2025, 37: 091002 doi: 10.11884/HPLPB202537.250033

    Xie Bo, Zhang Xiaohui, Li Tianyue, et al. Numerical study of electron acceleration and betatron radiation based on interaction of petawatt femtosecond laser with near-critical-density plasma[J]. High Power Laser and Particle Beams, 2025, 37: 091002 doi: 10.11884/HPLPB202537.250033
    [24]
    Ta Phuoc K, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6(5): 308-311. doi: 10.1038/nphoton.2012.82
    [25]
    Liu Cheng, Golovin G, Chen Shouyuan, et al. Generation of 9 MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light[J]. Optics Letters, 2014, 39(14): 4132-4135. doi: 10.1364/OL.39.004132
    [26]
    杜应超, 陈寒, 张鸿泽, 等. 紧凑型单能伽马射线源[J]. 强激光与粒子束, 2022, 34: 104010 doi: 10.11884/HPLPB202234.220132

    Du Yingchao, Chen Han, Zhang Hongze, et al. A very compact inverse Compton scattering gamma-ray source[J]. High Power Laser and Particle Beams, 2022, 34: 104010 doi: 10.11884/HPLPB202234.220132
    [27]
    Nakajima K. Towards a table-top free-electron laser[J]. Nature Physics, 2008, 4(2): 92-93. doi: 10.1038/nphys846
    [28]
    Wang Wentao, Feng Ke, Ke Lintong, et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 2021, 595(7868): 516-520. doi: 10.1038/s41586-021-03678-x
    [29]
    Pompili R, Alesini D, Anania M P, et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator[J]. Nature, 2022, 605(7911): 659-662. doi: 10.1038/s41586-022-04589-1
    [30]
    Labat M, Cabadağ J C, Ghaith A, et al. Seeded free-electron laser driven by a compact laser plasma accelerator[J]. Nature Photonics, 2023, 17(2): 150-156. doi: 10.1038/s41566-022-01104-w
    [31]
    Schroeder C B, Esarey E, Geddes C G R, et al. Physics considerations for laser-plasma linear colliders[J]. Physical Review Accelerators and Beams, 2010, 13: 101301. doi: 10.1103/PhysRevSTAB.13.101301
    [32]
    USDOE Office of Science. Advanced accelerator development strategy report: DOE advanced accelerator concepts research roadmap workshop[R]. USDOE Office of Science, 2016.
    [33]
    European Strategy Group. 2020 Update of the European strategy for particle physics[R]. Geneva: CERN Council, 2020.
    [34]
    Assmann R W, Weikum M K, Akhter T, et al. EuPRAXIA conceptual design report[J]. The European Physical Journal Special Topics, 2020, 229(24): 3675-4284. doi: 10.1140/epjst/e2020-000127-8
    [35]
    Seemann O, Wan Yang, Tata S, et al. Laser proton acceleration from a near-critical imploding gas target[J]. Physical Review Letters, 2024, 133: 025001. doi: 10.1103/PhysRevLett.133.025001
    [36]
    Wan Y, Andriyash I A, Hua J F, et al. Two-stage laser acceleration of high quality protons using a tailored density plasma[J]. Physical Review Accelerators and Beams, 2019, 22: 021301. doi: 10.1103/PhysRevAccelBeams.22.021301
    [37]
    Wan Yang, Tata S, Seemann O, et al. Real-time visualization of the laser-plasma wakefield dynamics[J]. Science Advances, 2024, 10: eadj3595. doi: 10.1126/sciadv.adj3595
    [38]
    Guo Zhiyuan, Liu Shuang, Zhou Bing, et al. Preclinical tumor control with a laser-accelerated high-energy electron radiotherapy prototype[J]. Nature Communications, 2025, 16: 1895. doi: 10.1038/s41467-025-57122-z
    [39]
    Li C K, Zhou X X, Chen Q, et al. Transition signatures for electron-positron pair creation in space-time inhomogeneous electric field[J]. arXiv preprint arXiv:, 2408, 09402: 2024.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (83) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return