Turn off MathJax
Article Contents
Yan Xiaolong, Wang Yu, Yan Chilu, et al. W-band Waveguide Filters Using Hybrid Higher-Order Modes for Quasi-Elliptic Response[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250414
Citation: Yan Xiaolong, Wang Yu, Yan Chilu, et al. W-band Waveguide Filters Using Hybrid Higher-Order Modes for Quasi-Elliptic Response[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250414

W-band Waveguide Filters Using Hybrid Higher-Order Modes for Quasi-Elliptic Response

doi: 10.11884/HPLPB202638.250414
  • Received Date: 2025-11-20
  • Accepted Date: 2026-01-12
  • Rev Recd Date: 2026-01-16
  • Available Online: 2026-01-29
  • Background
    The W-band constitutes a critical atmospheric window in the millimeter-wave spectrum, with significant importance for advanced applications such as high-capacity communications, high-resolution imaging, and high-precision sensing. As essential components within core millimeter-wave transmitter and receiver systems, filters fundamentally determine transceiver performance. However, conventional designs frequently face challenges in simultaneously achieving high electrical performance and favorable manufacturability, representing a key obstacle in contemporary W-band filter development.
    Purpose
    This work aims to develop a low-loss, low-order, and readily fabricable waveguide quasi-elliptic bandpass filter for the W-band. The goal is to maximize structural simplicity while maintaining high performance, thereby addressing the requirements of next-generation highly-integrated transceiver systems.
    Methods
    The proposed filter employs a novel H-plane offset magnetic coupling configuration, which simplifies the input–output coupling mechanism. Guided by quasi-elliptic filtering theory, transmission zeros are generated on both sides of the passband through the excitation of TE201/TE102 and TE301/TE102 hybrid modes in two respective resonant cavities, resulting in enhanced out-of-band suppression. The filter is implemented in a split-block architecture and fabricated via high-precision computer numerical control (CNC) milling.
    Results
    Measured results demonstrate an operational passband from 91.5 GHz to 98 GHz, corresponding to a 3 dB fractional bandwidth of 7%, with an in-band insertion loss as low as 0.4 dB and a return loss greater than 15 dB. Except for a slight deviation observed at the upper band edge, the experimental data show strong agreement with simulation, confirming the design’s manufacturability, integration compatibility, and high-frequency performance.
    Conclusions
    A compact, low-loss W-band quasi-elliptic filter has been successfully realized using only two hybrid-mode cavities. The presented design exhibits notable advantages in terms of fabrication ease, integration suitability, and electrical performance, providing a viable solution for advanced millimeter-wave system applications.
  • loading
  • [1]
    Wang Chengxiang, You Xiaohu, Gao Xiqi, et al. On the road to 6G: visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 905-974. doi: 10.1109/COMST.2023.3249835
    [2]
    Thomas B, Piironen P, Cuadrado-Calle D, et al. Millimeter- and submillimeter-wave technologies for space passive remote sensing instruments[J]. IEEE Journal of Microwaves, 2025, 5(6): 1212-1234. doi: 10.1109/JMW.2025.3605998
    [3]
    王战亮, 周帅岑, 路志刚, 等. W波段双通道微带行波管仿真设计[J]. 强激光与粒子束, 2025, 37: 083003

    Wang Zhanliang, Zhou Shuaicen, Lu Zhigang, et al. Design of W-band microstrip dual-channel traveling wave tubes[J]. High Power Laser and Particle Beams, 2025, 37: 083003
    [4]
    丁江乔, 梁启尧, 蒋均, 等. 基于肖特基二极管的310 GHz紧凑型接收机前端[J]. 强激光与粒子束, 2024, 36: 083002 doi: 10.11884/HPLPB202436.240119

    Ding Jiangqiao, Liang Qiyao, Jiang Jun, et al. 310 GHz compact receiver front-end based on Schottky diode[J]. High Power Laser and Particle Beams, 2024, 36: 083002 doi: 10.11884/HPLPB202436.240119
    [5]
    Cuadrado-Calle D, Piironen P, Ayllon N. Solid-state diode technology for millimeter and submillimeter-wave remote sensing applications: current status and future trends[J]. IEEE Microwave Magazine, 2022, 23(6): 44-56. doi: 10.1109/MMM.2022.3155031
    [6]
    Bartlett C, Bornemann J, Höft M. 3-D-printing and high-precision milling of W-band filter components with admittance inverter sequences[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(12): 2140-2147. doi: 10.1109/TCPMT.2021.3116220
    [7]
    许广阳, 赵芸, 陈垚, 等. W 波段单 E 面耦合宽带波导滤波器[J]. 微波学报, 2021, 37(3): 60-63,67 doi: 10.14183/j.cnki.1005-6122.202103013

    Xu Guangyang, Zhao Yun, Chen Yao, et al. W-band broadband waveguide filter based on single-sided E-plane coupling[J]. Journal of Microwaves, 2021, 37(3): 60-63,67 doi: 10.14183/j.cnki.1005-6122.202103013
    [8]
    Ma Hanchi, Qiu Jinghui, Zhang Nan. Design of a W-band high stop-band suppression rectangular waveguide filter[C]//Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2023: 1-3.
    [9]
    Shang Xiaobang, Lancaster M, Dong Yuliang. W-band waveguide filter based on large TM120 resonators to ease CNC milling[J]. Electronics Letters, 2017, 53(7): 488-490. doi: 10.1049/el.2016.4131
    [10]
    Bartlett C, Höft M. W-band TE102-mode filter with doubly loaded E-plane and H-plane irises[J]. Electronics Letters, 2021, 57(4): 190-192.
    [11]
    Chen Jianfei, Zhang Sheng, Zhang Chao, et al. W-band dual-band waveguide band-pass filter using dual-mode cavities[J]. Electronics Letters, 2018, 54(25): 1444-1446.
    [12]
    Bartlett C, Bornemann J, Höft M. Improved TM dual-mode filters with reduced fabrication complexity[J]. IEEE Journal of Microwaves, 2023, 3(1): 60-69. doi: 10.1109/JMW.2022.3211428
    [13]
    Li Sheng, Yan Yutao, Yang Shicheng, et al. 220 GHz dual-mode dual-band waveguide filter in stackable multilayer MEMS technology[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2023, 44(9): 659-672. doi: 10.1007/s10762-023-00936-z
    [14]
    Duan Junping, Shen Xinxin, Xiao Hong, et al. Micromachined W-band dual-band quasi-elliptic waveguide filter[J]. Microelectronics Journal, 2021, 115: 105200. doi: 10.1016/j.mejo.2021.105200
    [15]
    Xu Hao, Liu Haiwen, Huang Taotao, et al. 3-D-printed dual-band circularly polarized filtering antenna with self-diplexing property for millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(4): 3807-3812. doi: 10.1109/TAP.2024.3370300
    [16]
    Amari S, Rosenberg U, Bornemann J. Singlets, cascaded singlets, and the nonresonating node model for advanced modular design of elliptic filters[J]. IEEE Microwave and Wireless Components Letters, 2004, 14(5): 237-239. doi: 10.1109/LMWC.2004.827866
    [17]
    李田睿, 张波, 樊勇. 110 GHz带通太赫兹滤波器设计[J]. 太赫兹科学与电子信息学报, 2020, 18(1): 14-17,23 doi: 10.11805/TKYDA2018355

    Li Tianrui, Zhang Bo, Fan Yong. Design of 110 GHz band-pass terahertz filter[J]. Journal of Terahertz Science and Electronic Information, 2020, 18(1): 14-17,23 doi: 10.11805/TKYDA2018355
    [18]
    Ding Jiangqiao, Yuan Yi, Liang Qiyao, et al. Sub-THz fully inline dual-band filter based on high-order mode resonators[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2025, 46: 87. doi: 10.1007/s10762-025-01104-1
    [19]
    Xu Jing, Ding Jiangqiao, Zhao Yun, et al. W-band broadband waveguide filter based on H-plane offset coupling[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40(4): 412-418. doi: 10.1007/s10762-019-00571-7
    [20]
    Zhao Xinghai, Glubokov O, Oberhammer J. A silicon-micromachined waveguide platform with axial ports for integrated sub-THz filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(2): 1221-1232. doi: 10.1109/TMTT.2021.3136297
    [21]
    Chen Yao, Feng Yinian. A WR-2.8 band pseudoelliptic waveguide filter using TM110 and TE101 dual-mode cavities[J]. Materials & Design, 2025, 250: 113601. doi: 10.1016/j.matdes.2025.113601
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (18) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return