Turn off MathJax
Article Contents
Li Pengyu, Yu Cui, He Zezhao, et al. Investigation of the performance of vertical extrinsic photoconductive switches based on nitrogen-doped diamond[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250424
Citation: Li Pengyu, Yu Cui, He Zezhao, et al. Investigation of the performance of vertical extrinsic photoconductive switches based on nitrogen-doped diamond[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250424

Investigation of the performance of vertical extrinsic photoconductive switches based on nitrogen-doped diamond

doi: 10.11884/HPLPB202638.250424
  • Received Date: 2025-11-24
  • Accepted Date: 2026-01-14
  • Rev Recd Date: 2026-01-21
  • Available Online: 2026-02-07
  • Background
    Diamond is considered a promising candidate for photoconductive semiconductor switches (PCSSs) due to its exceptional material properties.
    Purpose
    However, the development of high-performance diamond PCSSs is primarily impeded by their high on-state resistance and relatively low breakdown voltage. This study aims to improve the performance of the diamond PCSSs.
    Methods
    Passivated with Si3N4, vertical PCSSs were fabricated using nitrogen-doped single-crystal diamonds with different doping concentrations and thicknesses. The doping concentrations of diamond samples were analyzed. The photoresponse of the PCSSs was characterized under 532 nm laser excitation over a range of DC bias voltages.
    Results
    The experimental results showed that the nitrogen-doped diamond PCSSs present a large on/off ratio (~1011) along with sub-nanosecond rise and fall times. Among them, the diamond PCSS device with the highest nitrogen doping concentration exhibited the minimum on-state resistance. By reducing material thickness, a peak output power of 128 kW was achieved at a bias voltage of 4 kV (corresponding to the electric field strength of 110 kV/cm), with the PCSS exhibiting an on-state resistance of 28.9 Ω, further improving the device performance.
    Conclusions
    Through the design of nitrogen doping concentration, reduction of substrate thickness, and application of Si3N4 passivation, this work successfully developed diamond PCSSs with good performance, paving the way for the development of high-performance diamond PCSSs.
  • loading
  • [1]
    Nunnally W C. High-power microwave generation using optically activated semiconductor switches[J]. IEEE Transactions on Electron Devices, 1990, 37(12): 2439-2448. doi: 10.1109/16.64516
    [2]
    Cai Ping, Xu Jiankai, Zhou Miao, et al. High responsivity lateral GaN film photoconductive semiconductor switch based on sapphire substrates for high-power application[J]. Optics Letters, 2025, 50(5): 1715-1718. doi: 10.1364/OL.554159
    [3]
    Ma Cheng, Wu Meilin, Wang Wennan, et al. Electrical characterizations of 35-kV semi-insulating gallium arsenide photoconductive switch[J]. Photonics, 2021, 8: 385. doi: 10.3390/photonics8090385
    [4]
    Wu Qilin, Xun Tao, Zhao Yuxin, et al. The test of a high-power, semi-insulating, linear-mode, vertical 6H-SiC PCSS[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1837-1842. doi: 10.1109/TED.2019.2901065
    [5]
    Meyers V, Voss L, Flicker J D, et al. Photoconductive semiconductor switches: materials, physics, and applications[J]. Applied Sciences, 2025, 15: 645. doi: 10.3390/app15020645
    [6]
    Majda-Zdancewicz E, Suproniuk M, Pawłowski M, et al. Current state of photoconductive semiconductor switch engineering[J]. Opto-Electronics Review, 2018, 26(2): 92-102. doi: 10.1016/j.opelre.2018.02.003
    [7]
    Yang Yingxiang, Hu Long, Yang Xianghong, et al. Improved lifetime for kilovolts class avalanche GaAs PCSS by surface passivation of composite dielectric films[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2025, 32(3): 1755-1759. doi: 10.1109/TDEI.2024.3465456
    [8]
    李飞, 黄嘉, 刘京亮, 等. 体结构4H-SiC光电导开关光电转换效率研究[J]. 强激光与粒子束, 2025, 37: 093001 doi: 10.11884/HPLPB202537.250131

    Li Fei, Huang Jia, Liu Jingliang, et al. Research on the photoelectric conversion efficiency of vertical 4H-SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2025, 37: 093001 doi: 10.11884/HPLPB202537.250131
    [9]
    杨彪, 孙逊, 李阳凡, 等. 激光能量分布对GaN基光导开关导通特性的影响[J]. 强激光与粒子束, 2024, 36: 115005 doi: 10.11884/HPLPB202436.240321

    Yang Biao, Sun Xun, Li Yangfan, et al. Influence of laser spot energy distribution on the on-state performance of GaN-based photoconductive switches[J]. High Power Laser and Particle Beams, 2024, 36: 115005 doi: 10.11884/HPLPB202436.240321
    [10]
    Zeng Linglong, Wang Langning, Niu Xinyue, et al. Characteristics comparison of SiC and GaN extrinsic vertical photoconductive switches[J]. IEEE Journal of the Electron Devices Society, 2024, 12: 249-255. doi: 10.1109/JEDS.2024.3372596
    [11]
    陈湘锦, 刘京亮, 段雪, 等. 超快响应GaN半导体光导开关的研制[J]. 半导体技术, 2022, 47(12): 960-964 doi: 10.13290/j.cnki.bdtjs.2022.12.004

    Chen Xiangjin, Liu Jingliang, Duan Xue, et al. Development of ultra-fast response GaN photoconductive semiconductor switch[J]. Semiconductor Technology, 2022, 47(12): 960-964 doi: 10.13290/j.cnki.bdtjs.2022.12.004
    [12]
    Donato N, Rouger N, Pernot J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective[J]. Journal of Physics D: Applied Physics, 2020, 53: 093001. doi: 10.1088/1361-6463/ab4eab
    [13]
    Han Zhuoran, Lee J, Mazumder A, et al. Record performance in intrinsic, impurity-free lateral diamond photoconductive semiconductor switches[J]. Applied Physics Letters, 2025, 126: 152105. doi: 10.1063/5.0266565
    [14]
    Woo K, Malakoutian M, Reeves B A, et al. A study on sub-bandgap photoexcitation in nitrogen- and boron-doped diamond with interdigitated device structure[J]. Applied Physics Letters, 2022, 120: 112104. doi: 10.1063/5.0083710
    [15]
    Collins A T, Connor A, Ly C H, et al. High-temperature annealing of optical centers in type-I diamond[J]. Journal of Applied Physics, 2005, 97: 083517. doi: 10.1063/1.1866501
    [16]
    Li Qi, Wang Juan, Chen Genqiang, et al. Breakdown voltage enhancement of vertical diamond Schottky barrier diodes by selective growth nitrogen-doped diamond field plate[J]. Diamond and Related Materials, 2023, 134: 109799. doi: 10.1016/j.diamond.2023.109799
    [17]
    Soto B, Couret M, Cañas J, et al. Non-volatile tuning of normally-on and off states of deep depletion ZrO2/O-terminated high voltage diamond MOSFET[J]. Diamond and Related Materials, 2023, 134: 109802. doi: 10.1016/j.diamond.2023.109802
    [18]
    Hall D L, Voss L F, Grivickas P, et al. Photoconductive switch with high sub-bandgap responsivity in nitrogen-doped diamond[J]. IEEE Electron Device Letters, 2020, 41(7): 1070-1073. doi: 10.1109/led.2020.2999821
    [19]
    Liu Liang, Liu Weiguo, Cao Na, et al. Study on the performance of PECVD silicon nitride thin films[J]. Defence Technology, 2013, 9(2): 121-126. doi: 10.1016/j.dt.2013.10.004
    [20]
    Yang Mingyang, Yuan Qilong, Gao Jingyao, et al. A diamond temperature sensor based on the energy level shift of nitrogen-vacancy color centers[J]. Nanomaterials, 2019, 9: 1576. doi: 10.3390/nano9111576
    [21]
    Siyushev P, Nesladek M, Bourgeois E, et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond[J]. Science, 2019, 363(6428): 728-731. doi: 10.1126/science.aav2789
    [22]
    Jiao Jian, Xiao Longfei, Sun Xun, et al. Low on-resistance and ultrafast rise time based on vertical diamond photoconductive switch with NPN structure[J]. ACS Photonics, 2024, 11(10): 4177-4183. doi: 10.2139/ssrn.4828497
    [23]
    田立强. 高功率GaAs光电导开关的特性与击穿机理研究[D]. 西安: 西安理工大学, 2009

    Tian Liqiang. Study on the characteristics and breakdown mechanism of high power GaAs photoconductive semiconductor switches[D]. Xi’an: Xi’an University of Technology, 2009
    [24]
    Buga S G, Kvashnin G M, Kuznetsov M S, et al. Hall measurements on nitrogen-doped Ib-type synthetic single crystal diamonds at temperatures 550–1143 K[J]. Applied Physics Letters, 2024, 124: 102107. doi: 10.1063/5.0180183
    [25]
    孙飞翔. GaAs光导开关的特性和损伤机理研究[D]. 合肥: 合肥工业大学, 2016

    Sun Feixiang. Characteristics and damage mechanism of GaAs PCSS[D]. Hefei: Hefei University of Technology, 2016
    [26]
    Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon-carbide photoconductive switches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561
    [27]
    Han Zhuoran, Lee J, Messing S, et al. High current density diamond photoconductive semiconductor switches with a buried, metallic conductive channel[J]. IEEE Electron Device Letters, 2024, 45(6): 1044-1047. doi: 10.1109/LED.2024.3387325
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return