| Citation: | Li Pengyu, Yu Cui, He Zezhao, et al. Investigation of the performance of vertical extrinsic photoconductive switches based on nitrogen-doped diamond[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250424 |
| [1] |
Nunnally W C. High-power microwave generation using optically activated semiconductor switches[J]. IEEE Transactions on Electron Devices, 1990, 37(12): 2439-2448. doi: 10.1109/16.64516
|
| [2] |
Cai Ping, Xu Jiankai, Zhou Miao, et al. High responsivity lateral GaN film photoconductive semiconductor switch based on sapphire substrates for high-power application[J]. Optics Letters, 2025, 50(5): 1715-1718. doi: 10.1364/OL.554159
|
| [3] |
Ma Cheng, Wu Meilin, Wang Wennan, et al. Electrical characterizations of 35-kV semi-insulating gallium arsenide photoconductive switch[J]. Photonics, 2021, 8: 385. doi: 10.3390/photonics8090385
|
| [4] |
Wu Qilin, Xun Tao, Zhao Yuxin, et al. The test of a high-power, semi-insulating, linear-mode, vertical 6H-SiC PCSS[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1837-1842. doi: 10.1109/TED.2019.2901065
|
| [5] |
Meyers V, Voss L, Flicker J D, et al. Photoconductive semiconductor switches: materials, physics, and applications[J]. Applied Sciences, 2025, 15: 645. doi: 10.3390/app15020645
|
| [6] |
Majda-Zdancewicz E, Suproniuk M, Pawłowski M, et al. Current state of photoconductive semiconductor switch engineering[J]. Opto-Electronics Review, 2018, 26(2): 92-102. doi: 10.1016/j.opelre.2018.02.003
|
| [7] |
Yang Yingxiang, Hu Long, Yang Xianghong, et al. Improved lifetime for kilovolts class avalanche GaAs PCSS by surface passivation of composite dielectric films[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2025, 32(3): 1755-1759. doi: 10.1109/TDEI.2024.3465456
|
| [8] |
李飞, 黄嘉, 刘京亮, 等. 体结构4H-SiC光电导开关光电转换效率研究[J]. 强激光与粒子束, 2025, 37: 093001 doi: 10.11884/HPLPB202537.250131
Li Fei, Huang Jia, Liu Jingliang, et al. Research on the photoelectric conversion efficiency of vertical 4H-SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2025, 37: 093001 doi: 10.11884/HPLPB202537.250131
|
| [9] |
杨彪, 孙逊, 李阳凡, 等. 激光能量分布对GaN基光导开关导通特性的影响[J]. 强激光与粒子束, 2024, 36: 115005 doi: 10.11884/HPLPB202436.240321
Yang Biao, Sun Xun, Li Yangfan, et al. Influence of laser spot energy distribution on the on-state performance of GaN-based photoconductive switches[J]. High Power Laser and Particle Beams, 2024, 36: 115005 doi: 10.11884/HPLPB202436.240321
|
| [10] |
Zeng Linglong, Wang Langning, Niu Xinyue, et al. Characteristics comparison of SiC and GaN extrinsic vertical photoconductive switches[J]. IEEE Journal of the Electron Devices Society, 2024, 12: 249-255. doi: 10.1109/JEDS.2024.3372596
|
| [11] |
陈湘锦, 刘京亮, 段雪, 等. 超快响应GaN半导体光导开关的研制[J]. 半导体技术, 2022, 47(12): 960-964 doi: 10.13290/j.cnki.bdtjs.2022.12.004
Chen Xiangjin, Liu Jingliang, Duan Xue, et al. Development of ultra-fast response GaN photoconductive semiconductor switch[J]. Semiconductor Technology, 2022, 47(12): 960-964 doi: 10.13290/j.cnki.bdtjs.2022.12.004
|
| [12] |
Donato N, Rouger N, Pernot J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective[J]. Journal of Physics D: Applied Physics, 2020, 53: 093001. doi: 10.1088/1361-6463/ab4eab
|
| [13] |
Han Zhuoran, Lee J, Mazumder A, et al. Record performance in intrinsic, impurity-free lateral diamond photoconductive semiconductor switches[J]. Applied Physics Letters, 2025, 126: 152105. doi: 10.1063/5.0266565
|
| [14] |
Woo K, Malakoutian M, Reeves B A, et al. A study on sub-bandgap photoexcitation in nitrogen- and boron-doped diamond with interdigitated device structure[J]. Applied Physics Letters, 2022, 120: 112104. doi: 10.1063/5.0083710
|
| [15] |
Collins A T, Connor A, Ly C H, et al. High-temperature annealing of optical centers in type-I diamond[J]. Journal of Applied Physics, 2005, 97: 083517. doi: 10.1063/1.1866501
|
| [16] |
Li Qi, Wang Juan, Chen Genqiang, et al. Breakdown voltage enhancement of vertical diamond Schottky barrier diodes by selective growth nitrogen-doped diamond field plate[J]. Diamond and Related Materials, 2023, 134: 109799. doi: 10.1016/j.diamond.2023.109799
|
| [17] |
Soto B, Couret M, Cañas J, et al. Non-volatile tuning of normally-on and off states of deep depletion ZrO2/O-terminated high voltage diamond MOSFET[J]. Diamond and Related Materials, 2023, 134: 109802. doi: 10.1016/j.diamond.2023.109802
|
| [18] |
Hall D L, Voss L F, Grivickas P, et al. Photoconductive switch with high sub-bandgap responsivity in nitrogen-doped diamond[J]. IEEE Electron Device Letters, 2020, 41(7): 1070-1073. doi: 10.1109/led.2020.2999821
|
| [19] |
Liu Liang, Liu Weiguo, Cao Na, et al. Study on the performance of PECVD silicon nitride thin films[J]. Defence Technology, 2013, 9(2): 121-126. doi: 10.1016/j.dt.2013.10.004
|
| [20] |
Yang Mingyang, Yuan Qilong, Gao Jingyao, et al. A diamond temperature sensor based on the energy level shift of nitrogen-vacancy color centers[J]. Nanomaterials, 2019, 9: 1576. doi: 10.3390/nano9111576
|
| [21] |
Siyushev P, Nesladek M, Bourgeois E, et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond[J]. Science, 2019, 363(6428): 728-731. doi: 10.1126/science.aav2789
|
| [22] |
Jiao Jian, Xiao Longfei, Sun Xun, et al. Low on-resistance and ultrafast rise time based on vertical diamond photoconductive switch with NPN structure[J]. ACS Photonics, 2024, 11(10): 4177-4183. doi: 10.2139/ssrn.4828497
|
| [23] |
田立强. 高功率GaAs光电导开关的特性与击穿机理研究[D]. 西安: 西安理工大学, 2009
Tian Liqiang. Study on the characteristics and breakdown mechanism of high power GaAs photoconductive semiconductor switches[D]. Xi’an: Xi’an University of Technology, 2009
|
| [24] |
Buga S G, Kvashnin G M, Kuznetsov M S, et al. Hall measurements on nitrogen-doped Ib-type synthetic single crystal diamonds at temperatures 550–1143 K[J]. Applied Physics Letters, 2024, 124: 102107. doi: 10.1063/5.0180183
|
| [25] |
孙飞翔. GaAs光导开关的特性和损伤机理研究[D]. 合肥: 合肥工业大学, 2016
Sun Feixiang. Characteristics and damage mechanism of GaAs PCSS[D]. Hefei: Hefei University of Technology, 2016
|
| [26] |
Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon-carbide photoconductive switches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561
|
| [27] |
Han Zhuoran, Lee J, Messing S, et al. High current density diamond photoconductive semiconductor switches with a buried, metallic conductive channel[J]. IEEE Electron Device Letters, 2024, 45(6): 1044-1047. doi: 10.1109/LED.2024.3387325
|