Turn off MathJax
Article Contents
Wang Gang, Jia Biao, Liu Shifei. 300 kV pre-ionization annular-cathode gas switch[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250444
Citation: Wang Gang, Jia Biao, Liu Shifei. 300 kV pre-ionization annular-cathode gas switch[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250444

300 kV pre-ionization annular-cathode gas switch

doi: 10.11884/HPLPB202638.250444
  • Received Date: 2025-12-09
  • Accepted Date: 2026-01-08
  • Rev Recd Date: 2026-01-10
  • Available Online: 2026-01-29
  • Background
    The rapid advancement of high-power pulse technology towards practical application imposes higher demands on the self-breakdown stability of high-voltage gas switches.
    Purpose
    This paper proposes a pre-ionization cathode switch concept, which utilizes an auxiliary annular blade edge to regulate initial electrons and an annular hemisphere to conduct the main current. A 300 kV-level pre-ionization annular cathode gas switch was designed.
    Methods
    With a switch gap of 35 mm, the field enhancement factor at the blade edge of the pre-ionization switch was designed to be 6.2, resulting in a ratio of 3.2 compared to the field enhancement factor at the hemisphere. Experimental investigations on the breakdown characteristics under microsecond-level pulses were conducted.
    Results
    The results indicate that in nitrogen at 0.5 MPa and a repetition rate of 1 Hz, the pre-ionization gas switch achieved an average breakdown voltage of 322.5 kV with a amplitude jitter of 0.44%. Compared to a pure annular hemispherical switch, the pre-ionization switch exhibits a 17.6% reduction in breakdown voltage and an 82% decrease in amplitude jitter.
    Conclusions
    The experimental study demonstrates that this pre-ionization gas switch offers significant advantages in achieving high voltage and low jitter.
  • loading
  • [1]
    刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [2]
    Bluhm H. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008: 75-149.

    Bluhm H. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008: 75-149. (Bluhm H. Pulsed power systems: principles and applications[M]. Jiang Weihua, Zhang Chi, trans. Beijing: Tsinghua University Press, 2008: 75-149
    [3]
    Martin J C. Nanosecond pulse techniques[J]. Proceedings of the IEEE, 1992, 80(6): 934-945. doi: 10.1109/5.149456
    [4]
    王刚, 张喜波, 王俊杰, 等. 基于Tesla变压器和Blumlein线的低抖动重频脉冲发生器[J]. 强激光与粒子束, 2016, 28: 045005 doi: 10.11884/HPLPB201628.045005

    Wang Gang, Zhang Xibo, Wang Junjie, et al. Low-jitter repetitive pulsed generator based on Tesla transformer and Blumlein pulse forming line[J]. High Power Laser and Particle Beams, 2016, 28: 045005 doi: 10.11884/HPLPB201628.045005
    [5]
    Wang Gang, Liu Sheng, Zeng Bo, et al. 15-GW repetitive pulsed power generator based on Midel 7131 and double-width pulse forming line[J]. Review of Scientific Instruments, 2024, 95: 114702. doi: 10.1063/5.0202377
    [6]
    Korovin S D, Rostov V V. High-current nanosecond pulse-periodic electron accelerators utilizing a tesla transformer[J]. Russian Physics Journal, 1996, 39(12): 1177-1185. doi: 10.1007/BF02436160
    [7]
    王天驰, 王海洋, 黄涛, 等. 自触发紫外预电离开关脉冲击穿时延抖动影响因素及改进方法[J]. 强激光与粒子束, 2022, 34: 075010

    Wang Tianchi, Wang Haiyang, Huang Tao, et al. Influence factors of the pulsed breakdown time delay jitter of a self-triggered UV-illuminated switch and an improvement method[J]. High Power Laser and Particle Beams, 2022, 34: 075010
    [8]
    Geng Jiuyuan, Yang Jianhua, Cheng Xinbing, et al. The development of high-voltage repetitive low-jitter corona stabilized triggered switch[J]. Review of Scientific Instruments, 2018, 89: 044705. doi: 10.1063/1.5011089
    [9]
    王刚, 张喜波, 刘胜, 等. 一种百千伏多级电晕稳定开关[J]. 现代应用物理, 2019, 10: 030402 doi: 10.12061/j.issn.2095-6223.2019.030402

    Wang Gang, Zhang Xibo, Liu Sheng, et al. A 100 kV multi-stage corona-stabilized switch[J]. Modern Applied Physics, 2019, 10: 030402 doi: 10.12061/j.issn.2095-6223.2019.030402
    [10]
    Krastelev E G, Nashilevskiy A V, Ponomarev D V, et al. Corona-stabilized gas spark gap switch for a double forming line with 300 kV working voltage[J]. Journal of Physics: Conference Series, 2018, 1115: 022018. doi: 10.1088/1742-6596/1115/2/022018
    [11]
    Frey W, Sack M, Wuestner R, et al. Gas-insulated self-breakdown spark gaps: aspects on low-scattering and long-lifetime switching[J]. Acta Physica Polonica A, 2009, 115(6): 1016-1018. doi: 10.12693/APhysPolA.115.1016
    [12]
    陈瀚. 自耦式预电离开关的研究[D]. 长沙: 国防科学技术大学, 2012

    Chen Han. Research on the self-coupling pre-ionization switch[D]. Changsha: National University of Defense Technology, 2012
    [13]
    Gao Pengcheng, Su Jiancang, Zeng Bo, et al. A low-jitter self-break repetitive multi-stage gas switch[J]. Review of Scientific Instruments, 2017, 88: 024705. doi: 10.1063/1.4973420
    [14]
    Su Jiancang, Zeng Bo, Gao Pengcheng, et al. A voltage-division-type low-jitter self-triggered repetition-rate switch[J]. Review of Scientific Instruments, 2016, 87: 105118. doi: 10.1063/1.4963659
    [15]
    Song Xiaoxin, Liu Guozhi, Peng Jianchang, et al. TPG400: A compact short pulse electron beam accelerator, EAPPC2006, Chengdu, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (14) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return