Turn off MathJax
Article Contents
Nie Zan, Xiang Hailong, Wang Xincheng, et al. Generation and applications of ultra-short and ultra-intense mid-infrared pulses from laser wakefields[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250468
Citation: Nie Zan, Xiang Hailong, Wang Xincheng, et al. Generation and applications of ultra-short and ultra-intense mid-infrared pulses from laser wakefields[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250468

Generation and applications of ultra-short and ultra-intense mid-infrared pulses from laser wakefields

doi: 10.11884/HPLPB202638.250468
  • Received Date: 2025-12-19
  • Accepted Date: 2026-01-27
  • Rev Recd Date: 2026-01-27
  • Available Online: 2026-02-11
  • Ultra-short and ultra-intense mid-infrared laser pulses hold unique application value in fields such as strong-field physics, ultrafast chemistry, environmental monitoring, and biomedical applications. Particularly in strong-field physics research, ultra-short and ultra-intense mid-infrared pulses provide a new wavelength scale distinct from the conventional near-infrared range, enabling the exploration of novel physics in the interaction between ultra-intense lasers and matter. However, due to the damage thresholds of traditional laser crystals and nonlinear crystals, the generation of high-energy, single-cycle mid-infrared light sources has long remained a significant challenge in ultrafast laser technology. In recent years, utilizing plasma as a nonlinear optical medium, the generation of ultra-short and ultra-intense mid-infrared pulses through photon deceleration process based on laser wakes has emerged as a new research direction in laser-plasma physics. This paper systematically reviews the fundamental principles, numerical simulations, experimental progress, and future application prospects surrounding this physical mechanism of plasma photon deceleration.
  • loading
  • [1]
    Popmintchev T, Chen Mingchang, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 2012, 336(6086): 1287-1291. doi: 10.1126/science.1218497
    [2]
    Ghimire S, DiChiara A D, Sistrunk E, et al. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 2011, 7(2): 138-141. doi: 10.1038/nphys1847
    [3]
    Blaga C I, Xu Junliang, DiChiara A D, et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction[J]. Nature, 2012, 483(7388): 194-197. doi: 10.1038/nature10820
    [4]
    Meckel M, Comtois D, Zeidler D, et al. Laser-induced electron tunneling and diffraction[J]. Science, 2008, 320(5882): 1478-1482. doi: 10.1126/science.1157980
    [5]
    Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 2014, 8(2): 119-123. doi: 10.1038/nphoton.2013.349
    [6]
    Petersen C R, Møller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11): 830-834. doi: 10.1038/nphoton.2014.213
    [7]
    Auston D H, Cheung K P. Coherent time-domain far-infrared spectroscopy[J]. Journal of the Optical Society of America B, 1985, 2(4): 606-612. doi: 10.1364/JOSAB.2.000606
    [8]
    Matsubara E, Nagai M, Ashida M. Coherent infrared spectroscopy system from terahertz to near infrared using air plasma produced by 10-fs pulses[J]. Journal of the Optical Society of America B, 2013, 30(6): 1627-1630. doi: 10.1364/JOSAB.30.001627
    [9]
    Mitrofanov A V, Voronin A A, Sidorov-Biryukov D A, et al. Mid-infrared laser filaments in the atmosphere[J]. Scientific Reports, 2015, 5: 8368. doi: 10.1038/srep08368
    [10]
    Sanchez D, Hemmer M, Baudisch M, et al. 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm[J]. Optica, 2016, 3(2): 147-150. doi: 10.1364/OPTICA.3.000147
    [11]
    Von Grafenstein L, Bock M, Ueberschaer D, et al. 5 μm few-cycle pulses with multi-Gigawatt peak power at a 1 kHz repetition rate[J]. Optics Letters, 2017, 42(19): 3796-3799. doi: 10.1364/OL.42.003796
    [12]
    Elu U, Steinle T, Sánchez D, et al. Table-top high-energy 7 μm OPCPA and 260 mJ Ho: YLF pump laser[J]. Optics Letters, 2019, 44(13): 3194-3197. doi: 10.1364/OL.44.003194
    [13]
    Walke D, Koç A, Gores F, et al. High-average-power, few-cycle, 2.1 µm OPCPA laser driver for soft-X-ray high-harmonic generation[J]. Optics Express, 2025, 33(5): 10006-10019. doi: 10.1364/OE.547689
    [14]
    Zhang Qingbin, Takahashi E J, Mücke O D, et al. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses[J]. Optics Express, 2011, 19(8): 7190-7212. doi: 10.1364/OE.19.007190
    [15]
    Fu Yuxi, Xue Bing, Midorikawa K, et al. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification[J]. Applied Physics Letters, 2018, 112: 241105. doi: 10.1063/1.5038414
    [16]
    Xu Lu, Nishimura K, Suda A, et al. Optimization of a multi-TW few-cycle 1.7-µm source based on Type-I BBO dual-chirped optical parametric amplification[J]. Optics Express, 2020, 28(10): 15138-15147. doi: 10.1364/OE.392045
    [17]
    Xu Lu, Xue Bing, Ishii N, et al. 100-mJ class, sub-two-cycle, carrier-envelope phase-stable dual-chirped optical parametric amplification[J]. Optics Letters, 2022, 47(13): 3371-3374. doi: 10.1364/OL.455811
    [18]
    Xu Lu, Takahashi E J. Dual-chirped optical parametric amplification of high-energy single-cycle laser pulses[J]. Nature Photonics, 2024, 18(1): 99-106. doi: 10.1038/s41566-023-01331-9
    [19]
    Schmidt B E, Thiré N, Boivin M, et al. Frequency domain optical parametric amplification[J]. Nature Communications, 2014, 5: 3643. doi: 10.1038/ncomms4643
    [20]
    Gruson V, Ernotte G, Lassonde P, et al. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification[J]. Optics Express, 2017, 25(22): 27706-27714. doi: 10.1364/OE.25.027706
    [21]
    Leshchenko V E, Talbert B K, Lai Yuhang, et al. High-power few-cycle Cr: ZnSe mid-infrared source for attosecond soft x-ray physics[J]. Optica, 2020, 7(8): 981-988. doi: 10.1364/OPTICA.393377
    [22]
    Migal E, Pushkin A, Bravy B, et al. 3.5-mJ 150-fs Fe: ZnSe hybrid mid-IR femtosecond laser at 4.4 μm for driving extreme nonlinear optics[J]. Optics Letters, 2019, 44(10): 2550-2553. doi: 10.1364/OL.44.002550
    [23]
    Haberberger D, Tochitsky S, Joshi C. Fifteen terawatt picosecond CO2 laser system[J]. Optics Express, 2010, 18(17): 17865-17875. doi: 10.1364/OE.18.017865
    [24]
    Tovey D, Tochitsky S Y, Pigeon J J, et al. Multi-atmosphere picosecond CO2 amplifier optically pumped at 4.3 μm[J]. Applied Optics, 2019, 58(21): 5756-5763.
    [25]
    Polyanskiy M N, Pogorelsky I V, Babzien M, et al. Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO2 amplifiers[J]. OSA Continuum, 2020, 3(3): 459-472. doi: 10.1364/OSAC.381467
    [26]
    Panagiotopoulos P, Hastings M G, Kolesik M, et al. Multi-terawatt femtosecond 10 µm laser pulses by self-compression in a CO2 cell[J]. OSA Continuum, 2020, 3(11): 3040-3047. doi: 10.1364/OSAC.399992
    [27]
    Pogorelsky I V, Polyanskiy M N, Babzien M, et al. Terawatt-class femtosecond long-wave infrared laser[J]. Frontiers in Physics, 2024, 12: 1390225. doi: 10.3389/fphy.2024.1390225
    [28]
    Pupeza I, Sánchez D, Zhang Jinwei, et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate[J]. Nature Photonics, 2015, 9(11): 721-724. doi: 10.1038/nphoton.2015.179
    [29]
    Krogen P, Suchowski H, Liang Houkun, et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses[J]. Nature Photonics, 2017, 11(4): 222-226. doi: 10.1038/nphoton.2017.34
    [30]
    Novák O, Krogen P R, Kroh T, et al. Femtosecond 8.5 μm source based on intrapulse difference-frequency generation of 2.1 μm pulses[J]. Optics Letters, 2018, 43(6): 1335-1338. doi: 10.1364/OL.43.001335
    [31]
    Gu Xingbin, Ding Yufang, Hu Zhixuan, et al. Difference-frequency generation of 0.2-mJ 3-cycle 9-µm pulses from two 1-kHz multicycle OPCPAs[J]. Laser & Photonics Reviews, 2025, 19: 2400507.
    [32]
    Fuji T, Suzuki T. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air[J]. Optics Letters, 2007, 32(22): 3330-3332. doi: 10.1364/ol.32.003330
    [33]
    Théberge F, Châteauneuf M, Roy G, et al. Generation of tunable and broadband far-infrared laser pulses during two-color filamentation[J]. Physical Review A, 2010, 81: 033821. doi: 10.1103/PhysRevA.81.033821
    [34]
    Nomura Y, Shirai H, Ishii K, et al. Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases[J]. Optics Express, 2012, 20(22): 24741-24747. doi: 10.1364/OE.20.024741
    [35]
    Fuji T, Nomura Y, Shirai H. Generation and characterization of phase-stable sub-single-cycle pulses at 3000 cm−1[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 8700612.
    [36]
    Huang Weihong, Zhao Yue, Kusama S, et al. Generation of sub-half-cycle 10 µm pulses through filamentation at kilohertz repetition rates[J]. Optics Express, 2020, 28(24): 36527-36543. doi: 10.1364/OE.408342
    [37]
    Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
    [38]
    Lu W, Huang C, Zhou M, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime[J]. Physical Review Letters, 2006, 96: 165002. doi: 10.1103/PhysRevLett.96.165002
    [39]
    Wilks S C, Dawson J M, Mori W B, et al. Photon accelerator[J]. Physical Review Letters, 1989, 62(22): 2600-2603. doi: 10.1103/PhysRevLett.62.2600
    [40]
    Sprangle P, Esarey E, Ting A. Nonlinear theory of intense laser-plasma interactions[J]. Physical Review Letters, 1990, 64(17): 2011-2014. doi: 10.1103/PhysRevLett.64.2011
    [41]
    Sprangle P, Esarey E, Ting A. Nonlinear interaction of intense laser pulses in plasmas[J]. Physical Review A, 1990, 41(8): 4463-4469. doi: 10.1103/PhysRevA.41.4463
    [42]
    Esarey E, Ting A, Sprangle P. Frequency shifts induced in laser pulses by plasma waves[J]. Physical Review A, 1990, 42(6): 3526-3531. doi: 10.1103/PhysRevA.42.3526
    [43]
    Bulanov S V, Inovenkov I N, Kirsanov V I, et al. Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma[J]. Physics of Fluids B: Plasma Physics, 1992, 4(7): 1935-1942. doi: 10.1063/1.860046
    [44]
    Tsung F S, Ren C, Silva L O, et al. Generation of ultra-intense single-cycle laser pulses by using photon deceleration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(1): 29-32. doi: 10.1073/pnas.262543899
    [45]
    Gordon D F, Hafizi B, Hubbard R F, et al. Asymmetric self-phase modulation and compression of short laser pulses in plasma channels[J]. Physical Review Letters, 2003, 90: 215001. doi: 10.1103/PhysRevLett.90.215001
    [46]
    Shadwick B A, Schroeder C B, Esarey E. Nonlinear laser energy depletion in laser-plasma accelerators[J]. Physics of Plasmas, 2009, 16: 056704. doi: 10.1063/1.3124185
    [47]
    Zhu W, Palastro J P, Antonsen T M. Pulsed mid-infrared radiation from spectral broadening in laser wakefield simulations[J]. Physics of Plasmas, 2013, 20: 073103. doi: 10.1063/1.4813245
    [48]
    Nie Zan, Pai C H, Hua Jianfei, et al. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure[J]. Nature Photonics, 2018, 12(8): 489-494. doi: 10.1038/s41566-018-0190-8
    [49]
    Zhu Xinglong, Weng Suming, Chen Min, et al. Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas[J]. Light: Science & Applications, 2020, 9: 46.
    [50]
    Zhu Xinglong, Liu Weiyuan, Weng Suming, et al. Generation of single-cycle relativistic infrared pulses at wavelengths above 20 µm from density-tailored plasmas[J]. Matter and Radiation at Extremes, 2022, 7: 014403. doi: 10.1063/5.0068265
    [51]
    何运孝, 基于等离子体尾场的超短超强激光操控研究[D]. 北京: 清华大学, 2023

    He Yunxiao. Research on ultra-short ultra-intense laser manipulation based on plasma wakefield[D]. Beijing: Tsinghua University, 2023
    [52]
    Zhu Xinglong, Chen Min, Weng Suming, et al. Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 µm[J]. Physical Review Applied, 2019, 12: 054024. doi: 10.1103/PhysRevApplied.12.054024
    [53]
    Li Dongao, Zhang Guobo, Cao Yue, et al. Generation of relativistic few-cycle radially polarized mid-infrared pulse in plasma channel[J]. Physics Letters A, 2025, 540: 130399. doi: 10.1016/j.physleta.2025.130399
    [54]
    Nie Zan, Wu Yipeng, Zhang Chaojie, et al. Ultra-short pulse generation from mid-IR to THz range using plasma wakes and relativistic ionization fronts[J]. Physics of Plasmas, 2021, 28: 023106. doi: 10.1063/5.0039301
    [55]
    Nie Zan, Pai C H, Zhang Jie, et al. Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses[J]. Nature Communications, 2020, 11: 2787. doi: 10.1038/s41467-020-16541-w
    [56]
    Lu Huangang, Liu Jiaxin, Cai Jie, et al. Generation of multi-cycle relativistic terahertz radiation from photon deceleration in a long self-induced plasma wake[J]. Physics of Plasmas, 2025, 32: 023104. doi: 10.1063/5.0241144
    [57]
    Lu Huangang, Ma Qianyi, Xia Yuhui, et al. Enhanced photon deceleration in an electron beam-assisted laser wakefield accelerator[J]. Physics of Plasmas, 2025, 32: 073110. doi: 10.1063/5.0275067
    [58]
    Faure J, Glinec Y, Santos J J, et al. Observation of laser-pulse shortening in nonlinear plasma waves[J]. Physical Review Letters, 2005, 95: 205003. doi: 10.1103/PhysRevLett.95.205003
    [59]
    Schreiber J, Bellei C, Mangles S P D, et al. Complete temporal characterization of asymmetric pulse compression in a laser wakefield[J]. Physical Review Letters, 2010, 105: 235003. doi: 10.1103/PhysRevLett.105.235003
    [60]
    Streeter M J V, Kneip S, Bloom M S, et al. Observation of laser power amplification in a self-injecting laser wakefield accelerator[J]. Physical Review Letters, 2018, 120: 254801. doi: 10.1103/PhysRevLett.120.254801
    [61]
    Pai C H, Chang Y Y, Ha L C, et al. Generation of intense ultrashort midinfrared pulses by laser-plasma interaction in the bubble regime[J]. Physical Review A, 2010, 82: 063804. doi: 10.1103/PhysRevA.82.063804
    [62]
    Schmid K, Buck A, Sears C M S, et al. Density-transition based electron injector for laser driven wakefield accelerators[J]. Physical Review Special Topics - Accelerators and Beams, 2010, 13: 091301. doi: 10.1103/PhysRevSTAB.13.091301
    [63]
    Gonsalves A J, Nakamura K, Lin Chen, et al. Tunable laser plasma accelerator based on longitudinal density tailoring[J]. Nature Physics, 2011, 7(11): 862-866. doi: 10.1038/nphys2071
    [64]
    Buck A, Wenz J, Xu J, et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 2013, 110: 185006. doi: 10.1103/PhysRevLett.110.185006
    [65]
    Hung T S, Yang C H, Wang J, et al. A 110-TW multiple-beam laser system with a 5-TW wavelength-tunable auxiliary beam for versatile control of laser-plasma interaction[J]. Applied Physics B, 2014, 117(4): 1189-1200. doi: 10.1007/s00340-014-5943-6
    [66]
    何运孝, 华剑飞, 张杰, 等. 基于拍瓦激光与等离子体作用的超强中红外脉冲产生[C]//第九届高能量密度物理青年科学家论坛. 2023: HEDP 2023-171

    He Yunxiao, Hua Jianfei, Zhang Jie, et al. Ultra-intense mid-infrared pulse generation based on the interaction between petawatt laser and plasma[C]//The 9th Young Scientists Forum on High Energy Density Physics. 2023: HEDP 2023-171
    [67]
    Wolter B, Pullen M G, Baudisch M, et al. Strong-field physics with mid-IR fields[J]. Physical Review X, 2015, 5: 021034.
    [68]
    Shan Bing, Chang Zenghu. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field[J]. Physical Review A, 2001, 65: 011804(R).
    [69]
    Popmintchev T, Chen M C, Bahabad A, et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(26): 10516-10521. doi: 10.1364/nlo.2009.nthc3
    [70]
    Xiong Hui, Xu Han, Fu Yuxi, et al. Generation of a coherent x ray in the water window region at 1 kHz repetition rate using a mid-infrared pump source[J]. Optics Letters, 2009, 34(11): 1747-1749. doi: 10.1364/OL.34.001747
    [71]
    Ishii N, Kaneshima K, Kitano K, et al. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses[J]. Nature Communications, 2014, 5: 3331. doi: 10.1038/ncomms4331
    [72]
    Takahashi E J, Kanai T, Ishikawa K L, et al. Coherent water window X ray by phase-matched high-order harmonic generation in neutral media[J]. Physical Review Letters, 2008, 101: 253901. doi: 10.1103/PhysRevLett.101.253901
    [73]
    Johnson A S, Miseikis L, Wood D A, et al. Measurement of sulfur L2, 3 and carbon K edge XANES in a polythiophene film using a high harmonic supercontinuum[J]. Structural Dynamics, 2016, 3: 062603. doi: 10.1063/1.4964821
    [74]
    Teichmann S M, Silva F, Cousin S L, et al. 0.5-keV soft X-ray attosecond continua[J]. Nature Communications, 2016, 7: 11493. doi: 10.1038/ncomms11493
    [75]
    Chen M C, Arpin P, Popmintchev T, et al. Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source[J]. Physical Review Letters, 2010, 105: 173901. doi: 10.1103/PhysRevLett.105.173901
    [76]
    Stein G J, Keathley P D, Krogen P, et al. Water-window soft x-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 μm OPCPA source[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49: 155601. doi: 10.1088/0953-4075/49/15/155601
    [77]
    Gao Jixing, Wu Jiaqi, Lou Zhiyuan, et al. High-order harmonic generation in an x-ray range from laser-induced multivalent ions of noble gas[J]. Optica, 2022, 9(9): 1003-1008. doi: 10.1364/OPTICA.456481
    [78]
    Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863): 509-513. doi: 10.1038/35107000
    [79]
    Sansone G, Benedetti E, Calegari F, et al. Isolated Single-cycle attosecond pulses[J]. Science, 2006, 314(5798): 443-446. doi: 10.1126/science.1132838
    [80]
    Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617. doi: 10.1126/science.1157846
    [81]
    Zhao Kun, Zhang Qi, Chini M, et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch[J]. Optics Letters, 2012, 37(18): 3891-3893. doi: 10.1364/OL.37.003891
    [82]
    Li Jie, Ren Xiaoming, Yin Yanchun, et al. 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nature Communications, 2017, 8: 186. doi: 10.1038/s41467-017-00321-0
    [83]
    Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 2017, 25(22): 27506-27518. doi: 10.1364/OE.25.027506
    [84]
    Ardana-Lamas F, Cousin S L, Lignieres J, et al. Brilliant source of 19.2-attosecond soft X-ray pulses below the atomic unit of time[J]. Ultrafast Science, 2025, 5: 0128. doi: 10.34133/ultrafastscience.0128
    [85]
    Doumy G, Wheeler J, Roedig C, et al. Attosecond synchronization of high-order harmonics from midinfrared drivers[J]. Physical Review Letters, 2009, 102: 093002. doi: 10.1103/PhysRevLett.102.093002
    [86]
    Lan Pengfei, Lu Peixiang, Cao Wei, et al. Isolated sub- 100 - as pulse generation via controlling electron dynamics[J]. Physical Review A, 2007, 76: 011402(R).
    [87]
    Pupeza I, Huber M, Trubetskov M, et al. Field-resolved infrared spectroscopy of biological systems[J]. Nature, 2020, 577(7788): 52-59. doi: 10.1038/s41586-019-1850-7
    [88]
    Kepesidis K V, Jacob P, Schweinberger W, et al. Electric-field molecular fingerprinting to probe cancer[J]. ACS Central Science, 2025, 11(4): 560-573. doi: 10.1021/acscentsci.4c02164
    [89]
    Glascoe E A, Zaug J M, Armstrong M R, et al. Nanosecond time-resolved and steady-state infrared studies of photoinduced decomposition of TATB at ambient and Elevated Pressure[J]. The Journal of Physical Chemistry A, 2009, 113(20): 5881-5887. doi: 10.1021/jp809418a
    [90]
    Powell M S, Bowlan P R, Son S F, et al. A benchtop shock physics laboratory: ultrafast laser driven shock spectroscopy and interferometry methods[J]. Review of Scientific Instruments, 2019, 90: 063001. doi: 10.1063/1.5092244
    [91]
    Först M, Manzoni C, Kaiser S, et al. Nonlinear phononics as an ultrafast route to lattice control[J]. Nature Physics, 2011, 7(11): 854-856. doi: 10.1038/nphys2055
    [92]
    Krüger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip[J]. Nature, 2011, 475(7354): 78-81. doi: 10.1038/nature10196
    [93]
    Rybka T, Ludwig M, Schmalz M F, et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime[J]. Nature Photonics, 2016, 10(10): 667-670. doi: 10.1038/nphoton.2016.174
    [94]
    Kling M F, Siedschlag C, Verhoef A J, et al. Control of electron localization in molecular dissociation[J]. Science, 2006, 312(5771): 246-248. doi: 10.1126/science.1126259
    [95]
    Wirth A, Hassan M T, Grguraš I, et al. Synthesized light transients[J]. Science, 2011, 334(6053): 195-200. doi: 10.1126/science.1210268
    [96]
    Hassan M T, Luu T T, Moulet A, et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons[J]. Nature, 2016, 530(7588): 66-70. doi: 10.1038/nature16528
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (22) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return