| Citation: | Nie Zan, Xiang Hailong, Wang Xincheng, et al. Generation and applications of ultra-short and ultra-intense mid-infrared pulses from laser wakefields[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250468 |
| [1] |
Popmintchev T, Chen Mingchang, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 2012, 336(6086): 1287-1291. doi: 10.1126/science.1218497
|
| [2] |
Ghimire S, DiChiara A D, Sistrunk E, et al. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 2011, 7(2): 138-141. doi: 10.1038/nphys1847
|
| [3] |
Blaga C I, Xu Junliang, DiChiara A D, et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction[J]. Nature, 2012, 483(7388): 194-197. doi: 10.1038/nature10820
|
| [4] |
Meckel M, Comtois D, Zeidler D, et al. Laser-induced electron tunneling and diffraction[J]. Science, 2008, 320(5882): 1478-1482. doi: 10.1126/science.1157980
|
| [5] |
Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 2014, 8(2): 119-123. doi: 10.1038/nphoton.2013.349
|
| [6] |
Petersen C R, Møller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11): 830-834. doi: 10.1038/nphoton.2014.213
|
| [7] |
Auston D H, Cheung K P. Coherent time-domain far-infrared spectroscopy[J]. Journal of the Optical Society of America B, 1985, 2(4): 606-612. doi: 10.1364/JOSAB.2.000606
|
| [8] |
Matsubara E, Nagai M, Ashida M. Coherent infrared spectroscopy system from terahertz to near infrared using air plasma produced by 10-fs pulses[J]. Journal of the Optical Society of America B, 2013, 30(6): 1627-1630. doi: 10.1364/JOSAB.30.001627
|
| [9] |
Mitrofanov A V, Voronin A A, Sidorov-Biryukov D A, et al. Mid-infrared laser filaments in the atmosphere[J]. Scientific Reports, 2015, 5: 8368. doi: 10.1038/srep08368
|
| [10] |
Sanchez D, Hemmer M, Baudisch M, et al. 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm[J]. Optica, 2016, 3(2): 147-150. doi: 10.1364/OPTICA.3.000147
|
| [11] |
Von Grafenstein L, Bock M, Ueberschaer D, et al. 5 μm few-cycle pulses with multi-Gigawatt peak power at a 1 kHz repetition rate[J]. Optics Letters, 2017, 42(19): 3796-3799. doi: 10.1364/OL.42.003796
|
| [12] |
Elu U, Steinle T, Sánchez D, et al. Table-top high-energy 7 μm OPCPA and 260 mJ Ho: YLF pump laser[J]. Optics Letters, 2019, 44(13): 3194-3197. doi: 10.1364/OL.44.003194
|
| [13] |
Walke D, Koç A, Gores F, et al. High-average-power, few-cycle, 2.1 µm OPCPA laser driver for soft-X-ray high-harmonic generation[J]. Optics Express, 2025, 33(5): 10006-10019. doi: 10.1364/OE.547689
|
| [14] |
Zhang Qingbin, Takahashi E J, Mücke O D, et al. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses[J]. Optics Express, 2011, 19(8): 7190-7212. doi: 10.1364/OE.19.007190
|
| [15] |
Fu Yuxi, Xue Bing, Midorikawa K, et al. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification[J]. Applied Physics Letters, 2018, 112: 241105. doi: 10.1063/1.5038414
|
| [16] |
Xu Lu, Nishimura K, Suda A, et al. Optimization of a multi-TW few-cycle 1.7-µm source based on Type-I BBO dual-chirped optical parametric amplification[J]. Optics Express, 2020, 28(10): 15138-15147. doi: 10.1364/OE.392045
|
| [17] |
Xu Lu, Xue Bing, Ishii N, et al. 100-mJ class, sub-two-cycle, carrier-envelope phase-stable dual-chirped optical parametric amplification[J]. Optics Letters, 2022, 47(13): 3371-3374. doi: 10.1364/OL.455811
|
| [18] |
Xu Lu, Takahashi E J. Dual-chirped optical parametric amplification of high-energy single-cycle laser pulses[J]. Nature Photonics, 2024, 18(1): 99-106. doi: 10.1038/s41566-023-01331-9
|
| [19] |
Schmidt B E, Thiré N, Boivin M, et al. Frequency domain optical parametric amplification[J]. Nature Communications, 2014, 5: 3643. doi: 10.1038/ncomms4643
|
| [20] |
Gruson V, Ernotte G, Lassonde P, et al. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification[J]. Optics Express, 2017, 25(22): 27706-27714. doi: 10.1364/OE.25.027706
|
| [21] |
Leshchenko V E, Talbert B K, Lai Yuhang, et al. High-power few-cycle Cr: ZnSe mid-infrared source for attosecond soft x-ray physics[J]. Optica, 2020, 7(8): 981-988. doi: 10.1364/OPTICA.393377
|
| [22] |
Migal E, Pushkin A, Bravy B, et al. 3.5-mJ 150-fs Fe: ZnSe hybrid mid-IR femtosecond laser at 4.4 μm for driving extreme nonlinear optics[J]. Optics Letters, 2019, 44(10): 2550-2553. doi: 10.1364/OL.44.002550
|
| [23] |
Haberberger D, Tochitsky S, Joshi C. Fifteen terawatt picosecond CO2 laser system[J]. Optics Express, 2010, 18(17): 17865-17875. doi: 10.1364/OE.18.017865
|
| [24] |
Tovey D, Tochitsky S Y, Pigeon J J, et al. Multi-atmosphere picosecond CO2 amplifier optically pumped at 4.3 μm[J]. Applied Optics, 2019, 58(21): 5756-5763.
|
| [25] |
Polyanskiy M N, Pogorelsky I V, Babzien M, et al. Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO2 amplifiers[J]. OSA Continuum, 2020, 3(3): 459-472. doi: 10.1364/OSAC.381467
|
| [26] |
Panagiotopoulos P, Hastings M G, Kolesik M, et al. Multi-terawatt femtosecond 10 µm laser pulses by self-compression in a CO2 cell[J]. OSA Continuum, 2020, 3(11): 3040-3047. doi: 10.1364/OSAC.399992
|
| [27] |
Pogorelsky I V, Polyanskiy M N, Babzien M, et al. Terawatt-class femtosecond long-wave infrared laser[J]. Frontiers in Physics, 2024, 12: 1390225. doi: 10.3389/fphy.2024.1390225
|
| [28] |
Pupeza I, Sánchez D, Zhang Jinwei, et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate[J]. Nature Photonics, 2015, 9(11): 721-724. doi: 10.1038/nphoton.2015.179
|
| [29] |
Krogen P, Suchowski H, Liang Houkun, et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses[J]. Nature Photonics, 2017, 11(4): 222-226. doi: 10.1038/nphoton.2017.34
|
| [30] |
Novák O, Krogen P R, Kroh T, et al. Femtosecond 8.5 μm source based on intrapulse difference-frequency generation of 2.1 μm pulses[J]. Optics Letters, 2018, 43(6): 1335-1338. doi: 10.1364/OL.43.001335
|
| [31] |
Gu Xingbin, Ding Yufang, Hu Zhixuan, et al. Difference-frequency generation of 0.2-mJ 3-cycle 9-µm pulses from two 1-kHz multicycle OPCPAs[J]. Laser & Photonics Reviews, 2025, 19: 2400507.
|
| [32] |
Fuji T, Suzuki T. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air[J]. Optics Letters, 2007, 32(22): 3330-3332. doi: 10.1364/ol.32.003330
|
| [33] |
Théberge F, Châteauneuf M, Roy G, et al. Generation of tunable and broadband far-infrared laser pulses during two-color filamentation[J]. Physical Review A, 2010, 81: 033821. doi: 10.1103/PhysRevA.81.033821
|
| [34] |
Nomura Y, Shirai H, Ishii K, et al. Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases[J]. Optics Express, 2012, 20(22): 24741-24747. doi: 10.1364/OE.20.024741
|
| [35] |
Fuji T, Nomura Y, Shirai H. Generation and characterization of phase-stable sub-single-cycle pulses at 3000 cm−1[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 8700612.
|
| [36] |
Huang Weihong, Zhao Yue, Kusama S, et al. Generation of sub-half-cycle 10 µm pulses through filamentation at kilohertz repetition rates[J]. Optics Express, 2020, 28(24): 36527-36543. doi: 10.1364/OE.408342
|
| [37] |
Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
|
| [38] |
Lu W, Huang C, Zhou M, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime[J]. Physical Review Letters, 2006, 96: 165002. doi: 10.1103/PhysRevLett.96.165002
|
| [39] |
Wilks S C, Dawson J M, Mori W B, et al. Photon accelerator[J]. Physical Review Letters, 1989, 62(22): 2600-2603. doi: 10.1103/PhysRevLett.62.2600
|
| [40] |
Sprangle P, Esarey E, Ting A. Nonlinear theory of intense laser-plasma interactions[J]. Physical Review Letters, 1990, 64(17): 2011-2014. doi: 10.1103/PhysRevLett.64.2011
|
| [41] |
Sprangle P, Esarey E, Ting A. Nonlinear interaction of intense laser pulses in plasmas[J]. Physical Review A, 1990, 41(8): 4463-4469. doi: 10.1103/PhysRevA.41.4463
|
| [42] |
Esarey E, Ting A, Sprangle P. Frequency shifts induced in laser pulses by plasma waves[J]. Physical Review A, 1990, 42(6): 3526-3531. doi: 10.1103/PhysRevA.42.3526
|
| [43] |
Bulanov S V, Inovenkov I N, Kirsanov V I, et al. Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma[J]. Physics of Fluids B: Plasma Physics, 1992, 4(7): 1935-1942. doi: 10.1063/1.860046
|
| [44] |
Tsung F S, Ren C, Silva L O, et al. Generation of ultra-intense single-cycle laser pulses by using photon deceleration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(1): 29-32. doi: 10.1073/pnas.262543899
|
| [45] |
Gordon D F, Hafizi B, Hubbard R F, et al. Asymmetric self-phase modulation and compression of short laser pulses in plasma channels[J]. Physical Review Letters, 2003, 90: 215001. doi: 10.1103/PhysRevLett.90.215001
|
| [46] |
Shadwick B A, Schroeder C B, Esarey E. Nonlinear laser energy depletion in laser-plasma accelerators[J]. Physics of Plasmas, 2009, 16: 056704. doi: 10.1063/1.3124185
|
| [47] |
Zhu W, Palastro J P, Antonsen T M. Pulsed mid-infrared radiation from spectral broadening in laser wakefield simulations[J]. Physics of Plasmas, 2013, 20: 073103. doi: 10.1063/1.4813245
|
| [48] |
Nie Zan, Pai C H, Hua Jianfei, et al. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure[J]. Nature Photonics, 2018, 12(8): 489-494. doi: 10.1038/s41566-018-0190-8
|
| [49] |
Zhu Xinglong, Weng Suming, Chen Min, et al. Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas[J]. Light: Science & Applications, 2020, 9: 46.
|
| [50] |
Zhu Xinglong, Liu Weiyuan, Weng Suming, et al. Generation of single-cycle relativistic infrared pulses at wavelengths above 20 µm from density-tailored plasmas[J]. Matter and Radiation at Extremes, 2022, 7: 014403. doi: 10.1063/5.0068265
|
| [51] |
何运孝, 基于等离子体尾场的超短超强激光操控研究[D]. 北京: 清华大学, 2023
He Yunxiao. Research on ultra-short ultra-intense laser manipulation based on plasma wakefield[D]. Beijing: Tsinghua University, 2023
|
| [52] |
Zhu Xinglong, Chen Min, Weng Suming, et al. Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 µm[J]. Physical Review Applied, 2019, 12: 054024. doi: 10.1103/PhysRevApplied.12.054024
|
| [53] |
Li Dongao, Zhang Guobo, Cao Yue, et al. Generation of relativistic few-cycle radially polarized mid-infrared pulse in plasma channel[J]. Physics Letters A, 2025, 540: 130399. doi: 10.1016/j.physleta.2025.130399
|
| [54] |
Nie Zan, Wu Yipeng, Zhang Chaojie, et al. Ultra-short pulse generation from mid-IR to THz range using plasma wakes and relativistic ionization fronts[J]. Physics of Plasmas, 2021, 28: 023106. doi: 10.1063/5.0039301
|
| [55] |
Nie Zan, Pai C H, Zhang Jie, et al. Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses[J]. Nature Communications, 2020, 11: 2787. doi: 10.1038/s41467-020-16541-w
|
| [56] |
Lu Huangang, Liu Jiaxin, Cai Jie, et al. Generation of multi-cycle relativistic terahertz radiation from photon deceleration in a long self-induced plasma wake[J]. Physics of Plasmas, 2025, 32: 023104. doi: 10.1063/5.0241144
|
| [57] |
Lu Huangang, Ma Qianyi, Xia Yuhui, et al. Enhanced photon deceleration in an electron beam-assisted laser wakefield accelerator[J]. Physics of Plasmas, 2025, 32: 073110. doi: 10.1063/5.0275067
|
| [58] |
Faure J, Glinec Y, Santos J J, et al. Observation of laser-pulse shortening in nonlinear plasma waves[J]. Physical Review Letters, 2005, 95: 205003. doi: 10.1103/PhysRevLett.95.205003
|
| [59] |
Schreiber J, Bellei C, Mangles S P D, et al. Complete temporal characterization of asymmetric pulse compression in a laser wakefield[J]. Physical Review Letters, 2010, 105: 235003. doi: 10.1103/PhysRevLett.105.235003
|
| [60] |
Streeter M J V, Kneip S, Bloom M S, et al. Observation of laser power amplification in a self-injecting laser wakefield accelerator[J]. Physical Review Letters, 2018, 120: 254801. doi: 10.1103/PhysRevLett.120.254801
|
| [61] |
Pai C H, Chang Y Y, Ha L C, et al. Generation of intense ultrashort midinfrared pulses by laser-plasma interaction in the bubble regime[J]. Physical Review A, 2010, 82: 063804. doi: 10.1103/PhysRevA.82.063804
|
| [62] |
Schmid K, Buck A, Sears C M S, et al. Density-transition based electron injector for laser driven wakefield accelerators[J]. Physical Review Special Topics - Accelerators and Beams, 2010, 13: 091301. doi: 10.1103/PhysRevSTAB.13.091301
|
| [63] |
Gonsalves A J, Nakamura K, Lin Chen, et al. Tunable laser plasma accelerator based on longitudinal density tailoring[J]. Nature Physics, 2011, 7(11): 862-866. doi: 10.1038/nphys2071
|
| [64] |
Buck A, Wenz J, Xu J, et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 2013, 110: 185006. doi: 10.1103/PhysRevLett.110.185006
|
| [65] |
Hung T S, Yang C H, Wang J, et al. A 110-TW multiple-beam laser system with a 5-TW wavelength-tunable auxiliary beam for versatile control of laser-plasma interaction[J]. Applied Physics B, 2014, 117(4): 1189-1200. doi: 10.1007/s00340-014-5943-6
|
| [66] |
何运孝, 华剑飞, 张杰, 等. 基于拍瓦激光与等离子体作用的超强中红外脉冲产生[C]//第九届高能量密度物理青年科学家论坛. 2023: HEDP 2023-171
He Yunxiao, Hua Jianfei, Zhang Jie, et al. Ultra-intense mid-infrared pulse generation based on the interaction between petawatt laser and plasma[C]//The 9th Young Scientists Forum on High Energy Density Physics. 2023: HEDP 2023-171
|
| [67] |
Wolter B, Pullen M G, Baudisch M, et al. Strong-field physics with mid-IR fields[J]. Physical Review X, 2015, 5: 021034.
|
| [68] |
Shan Bing, Chang Zenghu. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field[J]. Physical Review A, 2001, 65: 011804(R).
|
| [69] |
Popmintchev T, Chen M C, Bahabad A, et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(26): 10516-10521. doi: 10.1364/nlo.2009.nthc3
|
| [70] |
Xiong Hui, Xu Han, Fu Yuxi, et al. Generation of a coherent x ray in the water window region at 1 kHz repetition rate using a mid-infrared pump source[J]. Optics Letters, 2009, 34(11): 1747-1749. doi: 10.1364/OL.34.001747
|
| [71] |
Ishii N, Kaneshima K, Kitano K, et al. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses[J]. Nature Communications, 2014, 5: 3331. doi: 10.1038/ncomms4331
|
| [72] |
Takahashi E J, Kanai T, Ishikawa K L, et al. Coherent water window X ray by phase-matched high-order harmonic generation in neutral media[J]. Physical Review Letters, 2008, 101: 253901. doi: 10.1103/PhysRevLett.101.253901
|
| [73] |
Johnson A S, Miseikis L, Wood D A, et al. Measurement of sulfur L2, 3 and carbon K edge XANES in a polythiophene film using a high harmonic supercontinuum[J]. Structural Dynamics, 2016, 3: 062603. doi: 10.1063/1.4964821
|
| [74] |
Teichmann S M, Silva F, Cousin S L, et al. 0.5-keV soft X-ray attosecond continua[J]. Nature Communications, 2016, 7: 11493. doi: 10.1038/ncomms11493
|
| [75] |
Chen M C, Arpin P, Popmintchev T, et al. Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source[J]. Physical Review Letters, 2010, 105: 173901. doi: 10.1103/PhysRevLett.105.173901
|
| [76] |
Stein G J, Keathley P D, Krogen P, et al. Water-window soft x-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 μm OPCPA source[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49: 155601. doi: 10.1088/0953-4075/49/15/155601
|
| [77] |
Gao Jixing, Wu Jiaqi, Lou Zhiyuan, et al. High-order harmonic generation in an x-ray range from laser-induced multivalent ions of noble gas[J]. Optica, 2022, 9(9): 1003-1008. doi: 10.1364/OPTICA.456481
|
| [78] |
Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863): 509-513. doi: 10.1038/35107000
|
| [79] |
Sansone G, Benedetti E, Calegari F, et al. Isolated Single-cycle attosecond pulses[J]. Science, 2006, 314(5798): 443-446. doi: 10.1126/science.1132838
|
| [80] |
Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617. doi: 10.1126/science.1157846
|
| [81] |
Zhao Kun, Zhang Qi, Chini M, et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch[J]. Optics Letters, 2012, 37(18): 3891-3893. doi: 10.1364/OL.37.003891
|
| [82] |
Li Jie, Ren Xiaoming, Yin Yanchun, et al. 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nature Communications, 2017, 8: 186. doi: 10.1038/s41467-017-00321-0
|
| [83] |
Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 2017, 25(22): 27506-27518. doi: 10.1364/OE.25.027506
|
| [84] |
Ardana-Lamas F, Cousin S L, Lignieres J, et al. Brilliant source of 19.2-attosecond soft X-ray pulses below the atomic unit of time[J]. Ultrafast Science, 2025, 5: 0128. doi: 10.34133/ultrafastscience.0128
|
| [85] |
Doumy G, Wheeler J, Roedig C, et al. Attosecond synchronization of high-order harmonics from midinfrared drivers[J]. Physical Review Letters, 2009, 102: 093002. doi: 10.1103/PhysRevLett.102.093002
|
| [86] |
Lan Pengfei, Lu Peixiang, Cao Wei, et al. Isolated sub- 100 - as pulse generation via controlling electron dynamics[J]. Physical Review A, 2007, 76: 011402(R).
|
| [87] |
Pupeza I, Huber M, Trubetskov M, et al. Field-resolved infrared spectroscopy of biological systems[J]. Nature, 2020, 577(7788): 52-59. doi: 10.1038/s41586-019-1850-7
|
| [88] |
Kepesidis K V, Jacob P, Schweinberger W, et al. Electric-field molecular fingerprinting to probe cancer[J]. ACS Central Science, 2025, 11(4): 560-573. doi: 10.1021/acscentsci.4c02164
|
| [89] |
Glascoe E A, Zaug J M, Armstrong M R, et al. Nanosecond time-resolved and steady-state infrared studies of photoinduced decomposition of TATB at ambient and Elevated Pressure[J]. The Journal of Physical Chemistry A, 2009, 113(20): 5881-5887. doi: 10.1021/jp809418a
|
| [90] |
Powell M S, Bowlan P R, Son S F, et al. A benchtop shock physics laboratory: ultrafast laser driven shock spectroscopy and interferometry methods[J]. Review of Scientific Instruments, 2019, 90: 063001. doi: 10.1063/1.5092244
|
| [91] |
Först M, Manzoni C, Kaiser S, et al. Nonlinear phononics as an ultrafast route to lattice control[J]. Nature Physics, 2011, 7(11): 854-856. doi: 10.1038/nphys2055
|
| [92] |
Krüger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip[J]. Nature, 2011, 475(7354): 78-81. doi: 10.1038/nature10196
|
| [93] |
Rybka T, Ludwig M, Schmalz M F, et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime[J]. Nature Photonics, 2016, 10(10): 667-670. doi: 10.1038/nphoton.2016.174
|
| [94] |
Kling M F, Siedschlag C, Verhoef A J, et al. Control of electron localization in molecular dissociation[J]. Science, 2006, 312(5771): 246-248. doi: 10.1126/science.1126259
|
| [95] |
Wirth A, Hassan M T, Grguraš I, et al. Synthesized light transients[J]. Science, 2011, 334(6053): 195-200. doi: 10.1126/science.1210268
|
| [96] |
Hassan M T, Luu T T, Moulet A, et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons[J]. Nature, 2016, 530(7588): 66-70. doi: 10.1038/nature16528
|