留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑中子泄漏修正的快堆蒙特卡罗少群截面参数制作与验证方法

蔡利

蔡利. 考虑中子泄漏修正的快堆蒙特卡罗少群截面参数制作与验证方法[J]. 强激光与粒子束, 2018, 30: 026005. doi: 10.11884/HPLPB201830.170254
引用本文: 蔡利. 考虑中子泄漏修正的快堆蒙特卡罗少群截面参数制作与验证方法[J]. 强激光与粒子束, 2018, 30: 026005. doi: 10.11884/HPLPB201830.170254
Cai Li. Leakage-corrected fast reactor assembly calculation with Monte-Carlo code and its validation methodology[J]. High Power Laser and Particle Beams, 2018, 30: 026005. doi: 10.11884/HPLPB201830.170254
Citation: Cai Li. Leakage-corrected fast reactor assembly calculation with Monte-Carlo code and its validation methodology[J]. High Power Laser and Particle Beams, 2018, 30: 026005. doi: 10.11884/HPLPB201830.170254

考虑中子泄漏修正的快堆蒙特卡罗少群截面参数制作与验证方法

doi: 10.11884/HPLPB201830.170254
详细信息
    作者简介:

    蔡利(1986—),女,博士,工程师,主要从事核反应堆物理软件研发工作;caili2015@cgnpc.com.cn

  • 中图分类号: TL329.3

Leakage-corrected fast reactor assembly calculation with Monte-Carlo code and its validation methodology

  • 摘要: 一种基于B1均匀化方程的泄漏修正模型在连续能量蒙特卡罗程序TRIPOLI4中得以实现并且用于制作少群截面参数。此蒙卡泄漏修正模型通过在连续能量的蒙卡模拟以及求解B1均匀化方程之间迭代,最终得到蒙卡模拟下的临界状态。通过此方法得到的少群截面参数较其他蒙卡以及确定论方法有两点显著优势:用于求解B1均匀化方程的少群常数是用通过临界状态的通量谱得到的;考虑了泄漏效应的蒙卡模拟可以更真实地反映组件计算时的能谱状态。为验证此泄漏修正模型,一个由连续能量的TRIPOLI4模拟而得到的数值临界实验被用于分析与比较。通过与其他蒙卡程序SERPENT以及确定论程序ECCO进行结果对比,可证明此B1泄漏修正方法能够给出更精确的用于堆芯计算的少群截面参数。
  • 图  1  TRIPOLI4程序中泄漏修正模型的流程图

    Figure  1.  Leakage model algorithm in TRIPOLI4 code

    图  2  归一化临界通量密度谱比较

    Figure  2.  Comparison of normalized critical flux spectra

    图  3  泄漏率比较

    Figure  3.  Leakage rate comparison

    表  1  临界曲率比较结果

    Table  1.   Comparison of critical buckling values

    B2/(10-3cm-2) relative diff/%
    numerical curve 2.854 -
    TRIPOLI4 2.823 -1.09
    SERPENT 2.807 -1.65
    ECCO 2.747 -3.75
    下载: 导出CSV
  • [1] Park H J, Shim H J, Joo H G. Generation of few group diffusion theory constants by Monte Carlo code McCARD[J]. Nuclear Science and Engineering, 2012, 172(1): 66-77.
    [2] Leppänen J. SERPENT: a continuous-energy Monte Carlo reactor physics burnup calculation code[R]. Finland: VTT Technical Research Centre of Finland. 2013.
    [3] Cho N Z, Yun S H, Lee J. Generation of homogenized nodal parameters by Monte Carlo method with non-zero leakage spectra in global-local iteration framework[J]. Transactions of the American Nuclear Society, 2009, 101: 707-710.
    [4] Yamamoto T. Monte Carlo algorithm for buckling search and neutron leakage-corrected calculations[J]. Annals of Nuclear Energy, 2012, 47: 14-20. doi: 10.1016/j.anucene.2012.04.017
    [5] Cai Li, Pénéliau Y, Diop C M, et al. P1 adaptation of TRIPOLI-4 code for the use of 3D realistic core multigroup cross section generation[C]//Joint International Conference on Supercomputing in Nuclear Application and Monte Carlo. 2013.
    [6] Rimpault G. Algorithmic features of the ECCO cell code for treating heterogeneous fast reactor assemblies[C]//International Conference on Mathematics and Computations, Reactor Physics, and Environmental Analyses. 1995.
    [7] Grimstone M J, Tullett J D, Rimpault G. Accurate treatments of fast reactor fuel assembly heterogeneity with the ECCO cell code[C]//International Conference on the Physics of Reactors: Operation, Design and Computation-PHYSOR. 1990.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  1044
  • HTML全文浏览量:  214
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-21
  • 修回日期:  2017-10-17
  • 刊出日期:  2018-02-15

目录

    /

    返回文章
    返回