留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

补偿脉冲发电机放电波形优化方法

陶雪峰 刘昆

陶雪峰, 刘昆. 补偿脉冲发电机放电波形优化方法[J]. 强激光与粒子束, 2018, 30: 095001. doi: 10.11884/HPLPB201830.170325
引用本文: 陶雪峰, 刘昆. 补偿脉冲发电机放电波形优化方法[J]. 强激光与粒子束, 2018, 30: 095001. doi: 10.11884/HPLPB201830.170325
Tao Xuefeng, Liu Kun. Pulse shaping method for compulsator[J]. High Power Laser and Particle Beams, 2018, 30: 095001. doi: 10.11884/HPLPB201830.170325
Citation: Tao Xuefeng, Liu Kun. Pulse shaping method for compulsator[J]. High Power Laser and Particle Beams, 2018, 30: 095001. doi: 10.11884/HPLPB201830.170325

补偿脉冲发电机放电波形优化方法

doi: 10.11884/HPLPB201830.170325
基金项目: 国家高技术发展计划项目
详细信息
    作者简介:

    陶雪峰(1992-),男,硕士,从事惯性储能脉冲功率技术研究;taoxuefeng11@sina.cn

  • 中图分类号: TM301

Pulse shaping method for compulsator

  • 摘要: 基于一台两相四极空心补偿脉冲发电机,研究了多相脉冲电机放电波形调节的最优化问题。对补偿脉冲发电机的三种典型负载:电磁轨道炮、脉冲激光器和电热化学炮的基本特性进行了阐述,针对这三种负载分别提出了相应的优化指标,分析了量化脉冲波形对负载的适用程度,并将波形优化问题转化为函数优化问题。在建立了脉冲电机放电数学模型的基础上,使用差分进化算法对优化问题进行求解,找到最优点火角组合。对电磁轨道炮,优化指标为弹丸加速度比。将加速度比的概念进行拓展,可得到适用于脉冲激光器的尖顶脉冲。对电热化学炮,提出了“形状方差”的概念,消除了电流幅值的影响,能够较好地衡量脉冲形状的适用性。仿真结果表明,提出的脉冲波形优化指标是有效的,在智能优化算法的帮助下,能够通过控制量的组合得到不同类型负载的最优波形。
  • 图  1  补偿脉冲发电机剖面图

    Figure  1.  Cross section of compulsator

    图  2  自励磁及放电等效电路图

    Figure  2.  The equivalent circuit of excitation and discharge process

    图  3  电磁轨道炮优化放电波形

    Figure  3.  Optimized discharge pulse for EM gun

    图  4  脉冲激光器优化放电波形

    Figure  4.  Optimized discharge pulse for flashlamp

    图  5  电热化学炮优化放电波形

    Figure  5.  Optimized discharge pulse for ETC

    图  6  需求电流与实际电流对比

    Figure  6.  Comparison of desired and actual current

    表  1  仿真参数设置

    Table  1.   Simulation parameters

    initial rotor speed/(r·min-1) initial field current/kA rotor’s moment of inertia/(kg·m2) mass of projectile/g inductance gradient/(μH·m-1) resistance gradient/(mΩ·m-1) discharge period
    18 000 8 0.177 5 5 1 0.5 1
    下载: 导出CSV
  • [1] McNab I R. Pulsed power options for large EM launchers[J]. IEEE Trans Plasma Sci, 2015, 43(5): 1352-1357. doi: 10.1109/TPS.2014.2372173
    [2] Dai Ling, Dong Hanbin, Lin Fuchang, et al. Miniaturization of thyristor applied in pulse power supply[J]. Trans of China Electrotechnical Society, 2012, 27(8): 120-125.
    [3] Tang Lei, Yu Kexun. Investigation of the transient inductance for a pulsed alternator with fully passive compensation[J]. IEEE Trans Plasma Sci, 2016, 44(1): 71-78. doi: 10.1109/TPS.2015.2507399
    [4] Herbst J, Beno J, Ouroua A, et al. High slew rate power supplies for support of large pulsed loads[C]//IEEE Electric Ship Technologies Symposium (ESTS). 2015: 446-452.
    [5] Driga M D, Pratap S B, Weldon W F. Design of compensated pulsed alternators with current waveform flexibility[C]//6th IEEE Pulsed Power Conference. 1987.
    [6] Gao Liang, Li Zhenxiao, Li Baoming. The modeling and calculation on an air-core passive compulsator[J]. IEEE Trans Plasma Sci, 2015, 43(3): 864-868. doi: 10.1109/TPS.2015.2394352
    [7] Cui S M, Zhao W D, Wang S F, et al. Investigation of multiphase compulsator systems using a Co-simulation method of FEM-circuit analysis[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1247-1253. doi: 10.1109/TPS.2013.2248389
    [8] 王昊泽. 基于磁悬浮飞轮储能的被动补偿脉冲发电系统研究[D]. 长沙: 国防科学技术大学, 2010.

    Wang Haoze. Study on the compulsator system based on magnetic suspension flywheel. Changsha: National University of Defense Technology, 2010
    [9] 朱博峰, 鲁军勇, 王杰. 轻小型脉冲电源驱动的电磁发射系统建模[J]. 海军工程大学学报, 2016, 28(3): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGX2016S1021.htm

    Zhu Bofeng, Lu Junyong, Wang Jie. Modeling of electromagnetic launch system driven by CPA. Journal of Naval University of Engineering, 2016, 28(3): 100-104 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGX2016S1021.htm
    [10] Pratap S B, Driga M D, Weldon W F, et al. Future trends for compulsators driving railguns[J]. IEEE Trans Magn, 1986, 22(6): 1681-1683. doi: 10.1109/TMAG.1986.1064680
    [11] Pratap S B, Hsieh K T, Driga M D, et al. Advanced compulsators for railguns[J]. IEEE Trans Magnetics, 1989, 25(1): 454-459. doi: 10.1109/20.22581
    [12] 陈佳, 李海兵, 蒋宝财, 等. 脉冲氙灯放电时等离子体电阻的研究[J]. 激光与红外, 2009, 39(2): 190-193. doi: 10.3969/j.issn.1001-5078.2009.02.019

    Chen Jia, Li Haibing, Jiang Baocai, et al. Research on the impedance of plasma in xenon flash lamp during discharging. Laser and Infrared, 2009, 39(2): 190-193 doi: 10.3969/j.issn.1001-5078.2009.02.019
    [13] Winstanley P A. The role of pulse power in flashlamp pumped lasers[C]//IEE Colloq on Pulsed Power. 1997.
    [14] Loeb A, Kaplan Z. A theoretical model for the physical processes in the confined high pressure discharges of electrothermal launchers[J]. IEEE Trans Magn, 25(1): 342-346. doi: 10.1109/20.22561
    [15] Driga M D, Ingram M W, Weldon W F. Electrothermal accelerators: the power conditioning point of view[J]. IEEE Trans Magnetics, 25(1): 147-152. doi: 10.1109/20.22524
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1079
  • HTML全文浏览量:  239
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-25
  • 修回日期:  2018-02-20
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回