留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夹断开关对“荧光-1”实验装置电流特性的影响

方东凡 秦卫东 孙奇志 刘伟 贾月松 刘正芬 赵小明

方东凡, 秦卫东, 孙奇志, 等. 夹断开关对“荧光-1”实验装置电流特性的影响[J]. 强激光与粒子束, 2018, 30: 055001. doi: 10.11884/HPLPB201830.170385
引用本文: 方东凡, 秦卫东, 孙奇志, 等. 夹断开关对“荧光-1”实验装置电流特性的影响[J]. 强激光与粒子束, 2018, 30: 055001. doi: 10.11884/HPLPB201830.170385
Fang Dongfan, Qin Weidong, Sun Qizhi, et al. Influence of crowbar switch on the current of the'Yingguang -1' device[J]. High Power Laser and Particle Beams, 2018, 30: 055001. doi: 10.11884/HPLPB201830.170385
Citation: Fang Dongfan, Qin Weidong, Sun Qizhi, et al. Influence of crowbar switch on the current of the"Yingguang -1" device[J]. High Power Laser and Particle Beams, 2018, 30: 055001. doi: 10.11884/HPLPB201830.170385

夹断开关对“荧光-1”实验装置电流特性的影响

doi: 10.11884/HPLPB201830.170385
基金项目: 

国家自然科学基金项目 11375163

中国工程物理研究院基金项目 2011B0402009

详细信息
    作者简介:

    方东凡(1980—),男,硕士,副研究员,主要从事脉冲功率技术及应用研究;fangdongfan1208@126.com

    通讯作者:

    秦卫东(1968—),男,助理工程师,主要从事脉冲功率技术及应用研究;ldyqwd@sina.com

  • 中图分类号: TM85

Influence of crowbar switch on the current of the"Yingguang -1" device

  • 摘要: 主要探讨了夹断开关对“荧光-1”实验装置输出电流特性的影响,利用Pspice软件对其在装置中起到的作用进行功能建模并分析其参数影响,同时开展初步调试实验并分析多组夹断开关导通性能及其同步性对负载电流的影响。仿真与实验结果表明:夹断开关可有效改善负载电流脉宽,可使脉宽从原有3 μs展宽至100 μs,其导通电阻与电感参数均能明显影响电流幅值与脉宽。由实验波形结合仿真可知,夹断开关实际导通电阻约4 mΩ, 两支路耦合电感分别约为60,125 nH,调试结果验证了夹断开关功能建模的正确性及其对脉宽展宽的有效性。
  • 图  1  含夹断开关功能建模的分时放电能源系统简化电路

    Figure  1.  Circuit schematic of the program-discharged power system with the function modeling of the crowbar switch

    图  2  有无夹断开关对装置负载(θ箍缩线圈)电流脉宽影响对比

    Figure  2.  Influence on the duration of the load current with or without the crowbar switch

    图  3  夹断开关照片

    Figure  3.  Crowbar switch

    图  4  不同导通电阻值对装置负载电流波形的影响

    Figure  4.  Influence of the different closing resistance on the load current

    图  5  θ箍缩主场能源组回路不同损耗电阻Rm对负载电流波形的影响

    Figure  5.  Influence of different lossy resistance Rm in the θ pinch circuit on the amplitude of the load current

    图  6  不同Lp下,Ls变化对装置输出电流波形影响

    Figure  6.  Influence of the varied inductance of Ls on the output current at different inductance of Lp

    图  7  LpLs同时变化对输出电流波形的影响

    Figure  7.  Influence of both the varied inductances of Lp and Ls on the output current

    图  8  单组联调装置实测电流波形与仿真计算波形

    Figure  8.  Measured current and simulated result in the single combined testing device

    图  9  单组联调装置等效电路模型

    Figure  9.  Circuit model of the single combined device

    图  10  θ箍缩主场能源放电各组实测电流波形与仿真结果

    Figure  10.  Measured currents and simulated results of each branch when the θ pinch power is charged to ±30 kV

    图  11  负载实测电流波形与仿真结果

    Figure  11.  Measured load current and simulated results

    表  1  不同导通电阻值对应的电流有效脉宽参数

    Table  1.   Effective durations of the load current at different closing resistance

    closing resistance/mΩ effective duration/μs
    0.01 152
    0.1 93
    1 19
    10 6
    下载: 导出CSV

    表  2  不同损耗电阻Rm值对应的负载电流幅值

    Table  2.   Corresponding amplitudes of the load current at different loss resistance Rm

    lossy resistance Rm/mΩ amplitude of Iload/MA
    0.1 1.54
    1 1.52
    10 1.37
    100 0.66
    下载: 导出CSV
  • [1] Gotchev O V, Knauer J P, Chang P Y, et al. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas[J]. Review of Scientific Instruments, 2009, 80: 043504. doi: 10.1063/1.3115983
    [2] Lynn A G, Merritt E, Gilmore M, et al. Diagnostics for the plasma liner experiment[J]. Review of Scientific Instruments, 2010, 81: 10E115. doi: 10.1063/1.3478116
    [3] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [4] Stephen A S, Roger A V. High-gain magnetized inertial fusion[J]. Physical Review Letters, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
    [5] Taccetti J M, Intrator T P, Wurden G A, et al. FRX-L: A field-reversed configuration plasma injector for magnetized target fusion[J]. Review of Scientific Instruments, 2003, 74(10): 4314-4323. doi: 10.1063/1.1606534
    [6] Degnan J H, Amdahl D J, Brown A, et al. Experimental and computational progress on liner implosion for compression of FRCs[J]. IEEE Transactions on Plasma Science, 2008, 36(1): 80-91. doi: 10.1109/TPS.2007.913814
    [7] Finn J M, Sudan R N. Field-reversed configurations with a component of energetic particles[J]. Nuclear Fusion, 1982, 22(11): 1443-1518. http://www.onacademic.com/detail/journal_1000035869425310_9e68.html
    [8] Armstrong W T, Linford R K, Lipson J, et al. Field-reversed experiments(FRX) on compact toroids[J]. Physics of Fluids, 1981, 24(11): 2068-2089. doi: 10.1063/1.863303
    [9] Siemon R E, Armstrong W T, Bartsch R R. Plasma physics and controlled nuclear fusion research[C]//Proceedings of an International Conference. 1982, 2: 283.
    [10] Intrator T, Zhang S Y, Degnan J H, et al. A high density field reversed configuration(FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC[J]. Physics of Plasmas, 2004, 11(5): 2580-2585. doi: 10.1063/1.1689666
    [11] Kumashiro S, Takahashi T, Ooi M, et al. Review of field-reversed configurations: Physics[J]. J Phys Soc Jpn, 1993, 62: 1539. doi: 10.1143/JPSJ.62.1539
    [12] Harris W S, Trask E, Roche T, et al. Ion flow measurements and plasma current analysis in the Irvine Field Reversed Configuration[J]. Physics of Plasmas, 2009, 16: 112509.
    [13] Ono Y, Morita A, Katsurai M, et al. Experimental investigation of three-dimensional magnetic reconnection by use of two colliding spheromaks[J]. Physics of Fluids B Plasma Physics, 1993, 5(10): 3691-3701. http://www.researchgate.net/profile/Masaaki_Yamada2/publication/253674661_Experimental_investigation_of_three-dimensional_magnetic_reconnection_by_use_of_colliding_spheromaks/links/54f0860b0cf24eb87940c455.pdf
    [14] Kawamori E, Ono Y. Effect of ion skin depth on relaxation of merging spheromaks to a field-reversed configuration[J]. Physical Review Letters, 2005, 95: 085003. doi: 10.1103/PhysRevLett.95.085003
    [15] Yamada M, Ji H, Hsu S, et al. Study of driven magnetic reconnection in a laboratory plasma[J]. Physics of Plasmas, 1997, 4(5): 1936-1944. doi: 10.1063/1.872336
    [16] Binderbauer M W, Guo H Y, Tuszewski M, et al. Dynamic formation of a hot field reversed configuration with improved confinement by supersonic merging of two colliding high-β compact toroids[J]. Physical Review Letters, 2010, 105: 045003. doi: 10.1103/PhysRevLett.105.045003
    [17] Hoffman A L, Guo H Y, Slough J T, et al. The TCS rotating magnetic field FRC current-drive experiment[J]. Fusion Science and Technology, 2002, 41(2): 92-106. doi: 10.13182/FST02-A205
    [18] Guo H Y, Hoffman A L, Milroy R D. Rotating magnetic field current drive of high-temperature field reversed configurations with high ζ scaling[J]. Physics of Plasmas, 2007, 14: 112502.
    [19] Munsat T, Ellison C L, Light A, et al. The Colorado FRC Experiment[J]. Journal of Fusion Energy, 2008, 27(1/2): 82-86.
    [20] 孙奇志, 方东凡, 刘伟, 等. "荧光-1"实验装置物理设计[J]. 物理学报, 2013, 62: 078407. doi: 10.7498/aps.62.078407

    Sun Qizhi, Fang Dongfan, Liu Wei, et al. Physical design of the "Ying-Guang 1" device. Acta Physica Sinica, 2013, 62: 078407 doi: 10.7498/aps.62.078407
    [21] Grabowski C, Degnan J H, Cavazos T, et al. Development of a high-current low-inductance crowbar switch for FRX-L[J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1905-1915. doi: 10.1109/TPS.2002.805405
    [22] Intrator T P, Park J Y, Degnan J H, et al. A high-density field reversed configuration plasma for magnetized target fusion[J]. IEEE Transactions on Plasma Science, 2004, 32(1): 152-160.
    [23] Wurden G A, Intrator T P. Compressional heating of a compact toroid plasma to fusion conditions[R]. DOE F4650.2, 200: 1-75.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1015
  • HTML全文浏览量:  280
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-26
  • 修回日期:  2017-12-01
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回