留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同轨道结构下电枢电流分布特性

刘明 舒涛 苗海玉 刘少伟 薛新鹏

刘明, 舒涛, 苗海玉, 等. 不同轨道结构下电枢电流分布特性[J]. 强激光与粒子束, 2018, 30: 055005. doi: 10.11884/HPLPB201830.170422
引用本文: 刘明, 舒涛, 苗海玉, 等. 不同轨道结构下电枢电流分布特性[J]. 强激光与粒子束, 2018, 30: 055005. doi: 10.11884/HPLPB201830.170422
Liu Ming, Shu Tao, Miao Haiyu, et al. Distribution characteristics of armature current in different orbit structures[J]. High Power Laser and Particle Beams, 2018, 30: 055005. doi: 10.11884/HPLPB201830.170422
Citation: Liu Ming, Shu Tao, Miao Haiyu, et al. Distribution characteristics of armature current in different orbit structures[J]. High Power Laser and Particle Beams, 2018, 30: 055005. doi: 10.11884/HPLPB201830.170422

不同轨道结构下电枢电流分布特性

doi: 10.11884/HPLPB201830.170422
基金项目: 

国家自然科学基金青年科学基金项目 51605488

详细信息
    作者简介:

    刘明(1993—),男,硕士研究生,主要从事电磁发射研究;929237749@qq.com

    通讯作者:

    舒涛(1971—),男,教授,主要从事发射理论与技术研究;st9711@sina.com

  • 中图分类号: TP391.9

Distribution characteristics of armature current in different orbit structures

  • 摘要: 解决轨道和电枢的烧蚀问题是六极轨道电磁发射器走向实际应用的关键环节,引起轨道和电枢烧蚀的原因之一就是轨道和电枢中电流分布不均匀。利用有限元仿真软件Ansoft Maxwell对三种不同轨道进行仿真,得到了电枢表面电流密度分布情况以及电枢受力。结果表明:矩形轨道对应电枢表面电流密度最大值在三种轨道中最小,凸出半圆形轨道枢轨接触面电流分布最均匀,在发射过程中可以有效减少轨道和电枢的烧蚀,凹陷半圆形轨道对应的电枢受力最大,可用于大质量物体的发射。
  • 图  1  六极轨道发射器模型

    Figure  1.  Six-pole orbiter launcher model

    图  2  抛体和六极轨道的电流流动方向

    Figure  2.  Projectile and six pole orbit current flow direction

    图  3  三种轨道截面

    Figure  3.  Three orbital sections

    图  4  脉冲电流

    Figure  4.  Pulse current

    图  5  电枢表面电流密度分布

    Figure  5.  Distribution of current density on armature surfaces

    图  6  电枢受力随时间变化

    Figure  6.  Armature force changes over time

    图  7  枢轨接触面电流分布

    Figure  7.  Current distribution of armature contact surface

    图  8  不同轨道枢轨接触面电流分布

    Figure  8.  Current distribution of different armature rail contact surfaces

    图  9  轨道尺寸对受力的影响

    Figure  9.  Influence of orbital dimensions on armature stress

    表  1  不同轨道最大电流密度值

    Table  1.   Maximum current density of different orbits

    R or Δb/mm Jrect/(GA·m-2) Jconvex/(GA·m-2) Jconcave/(GA·m-2)
    2 9.14 11.3 12.0
    3 8.62 10.1 15.8
    4 7.88 84.4 16.0
    下载: 导出CSV
  • [1] Marshall R A, 王莹. 电磁轨道炮的科学与技术[M]. 北京: 兵器工业出版社, 2006: 23-25.

    Marshall R A, Wang Ying. The science and technology of electromagnetic railguns. Beijing: Weapons Industry Press, 2006: 23-25
    [2] 赵纯, 邹积岩, 何俊佳, 等. 重接式电磁发射的线圈与发射体仿真计算[J]. 电工电能新技术, 2008, 27(1): 21-24. doi: 10.3969/j.issn.1003-3076.2008.01.004

    Zhao Chun, Zou Jiyan, He Junjia, et al. The coils of the reconnected electromagnetic emission are calculated by simulation. New Electric Power Technology, 2008, 27(1): 21-24 doi: 10.3969/j.issn.1003-3076.2008.01.004
    [3] 陈学慧, 曹延杰, 王成学, 等. 一种新型电磁线圈发射器的动态特性[J]. 电工技术学报, 2013, 28(5): 154-160. doi: 10.3969/j.issn.1000-6753.2013.05.021

    Chen Xuehui, Cao Yanjie, Wang Chengxue, et al. A new dynamic study of electromagnetic coil transmitter. Transactions of China Electrotechnical Society, 2013, 28(5): 154-160 doi: 10.3969/j.issn.1000-6753.2013.05.021
    [4] 邹本贵, 曹延杰, 李瑞锋, 等. 电磁线圈发射器相似模型研究[J]. 电工技术学报, 2013, 28(2): 73-77, 90. doi: 10.3969/j.issn.1000-6753.2013.02.010

    Zou Bengui, Cao Yanjie, Li Ruifeng, et al. Similar model electromagnetic coil transmitter. Transactions of China Electrotechnical Society, 2013, 28 (2): 73-77, 90 doi: 10.3969/j.issn.1000-6753.2013.02.010
    [5] Chung S M, Chuang Y C. Characteristics of electromagnetic radiation of a railgun at the final firing stage[J]. IEEE Trans Plasma Science, 2016, 44(1): 49-58. doi: 10.1109/TPS.2015.2502268
    [6] 苗海玉, 刘少伟, 刘明. 串联增强型四极轨道发射器电磁推力仿真研究[J]. 空军工程大学学报(自然科学版), 2018, 19(3): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201803013.htm

    Miao Haiyu, Liu Shaowei, Liu Ming. Simulation and analysis of electromagnetic propulsion for series-connected augmented quadrupole railgun. Journal of Force Engineering University(Natural Science Edition), 2018, 19(3): 21-26 https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201803013.htm
    [7] 郑红星, 萧剑平, 曹桂珍, 等. 小型战术导弹电磁兼容性测试与仿真分析研究[J]. 弹箭与制导学报, 2013, 33(1): 44-48. doi: 10.3969/j.issn.1673-9728.2013.01.011

    Zheng Hong-xing, Xiao Jianping, Cao Guizhen, et al. Research on EMC test and simulation analysis of small tactical missile. Journal of Missile and Guidance, 2013, 33(1): 44-48 doi: 10.3969/j.issn.1673-9728.2013.01.011
    [8] 郭勇, 刘小平, 周卫平. 美海军电磁轨道炮的革命[J]. 现代舰船, 2004, 31(5): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJC200405009.htm

    Guo Yong, Liu Xiaoping, Zhou Weiping. The revolution of the US Navy's electromagnetic railguns. Modern Ships, 2004, 31(5): 30-32 https://www.cnki.com.cn/Article/CJFDTOTAL-XDJC200405009.htm
    [9] Fair H D. The past, present, and future of electromagnetic launch technology and the IEEE International EML Symposia[J]. IEEE Trans Plasma Science, 2013, 41(5): 11-16.
    [10] Fair H D. Electric launch science and technology in the United States[J]. IEEE Trans Magnetics, 2003, 39(1): 11-17. doi: 10.1109/TMAG.2002.805854
    [11] Fair H D. Progress in electromagnetic launch science and technology[J]. IEEE Trans Magnetics, 2007, 43(1): 93-98. doi: 10.1109/TMAG.2006.887596
    [12] 谭赛, 鲁军勇, 张晓, 等. 导轨式电磁发射装置电枢熔化波有限元计算[J]. 西安交通大学学报, 2016, 50(3): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201603017.htm

    Tan Sai, Lu Junyong, Zhang Xiao, et al. Finite element analysis of melt wave ablation in electromagnetic rail launcher armatures. Journal of Xi'an Jiaotong University, 2016, 50(3): 106-111 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201603017.htm
    [13] 袁瑞敏, 袁伟群, 徐伟东, 等. 电磁发射中枢轨接触电阻特性研究[J]. 电工电能新技术, 2017, 1(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN201801007.htm

    Yuan Ruimin, Yuan Weiqun, Xu Weidong, et al. Research on contact resistance characteristics between armature and rails in electromagnetic launch. Advanced Technology of Electrical Engineering and Energy, 2017, 1(4): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN201801007.htm
    [14] 刘峰, 党晟罡, 赵丽曼, 等. H形固体电枢形状设计及接触应力分析[J]. 火炮发射与控制学报, 2015, 36(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201501001.htm

    Liu Feng, Dang Shenggang, Zhao Liman, et al. Shape design and contact stress analysis of H-shape solid armature. Journal of Gun Launch & Control, 2015, 36(1): 1-4 https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201501001.htm
    [15] 赵月红, 张丹丹, 赵晓玲. 铝合金刷电枢的电磁发射特性研究[J]. 高压物理学报, 2016, 30(3): 184-190. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201603002.htm

    Zhao Yuehong, Zhang Dandan, Zhao Xiaoling. Investigations on electromagnetic launching characteristic of aluminum alloy brush armature. Chinese Journal of High Pressure Physics, 2016, 30(3): 184-190 https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201603002.htm
    [16] 王刚华, 谢龙, 王强, 等. 电磁轨道炮电磁力学分析[J]. 火炮发射与控制学报, 2011, 32(1): 69-71, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201101017.htm

    Wang Ganghua, Xie Long, Wang Qiang, et al. Analysis on electromagnetic mechanics in electromagnetic railgun. Journal of Gun Launch & Control, 2011, 32(1): 69-71, 76 https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201101017.htm
    [17] 解世山, 吕庆敖, 郭春龙, 等. 静止条件下轨道炮电流分布特征仿真[J]. 火炮发射与控制学报, 2012, 33(2): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201202003.htm

    Xie Shishan, Lü Qingao, Guo Chunlong, et al. Finite element simulation on current distribution feature of rail launchers under static conditions. Journal of Gun Launch & Control, 2012, 33(2): 9-12 https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201202003.htm
    [18] Bayati M S, Keshtkar A. Transition study of current distribution and maximum current density in railgun by 3-D FEM-IEM[J]. IEEE Trans Plasma Science, 2011, 39 (1): 13-17.
    [19] Ferrero R, Marracci M, Tellini B. Characterization of inductance gradient and current distribution in electromagnetic launchers[J]. IEEE Trans Instrumentation and Measurement, 2011, 60(5): 1795-1801.
    [20] 曹昭君, 肖铮. 电磁发射系统C型固体电枢的电流密度分布特性及其机理分析[J]. 电工电能新技术, 2012, 31(2): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN201202004.htm

    Cao Zhaojun, Xiao Zheng. Current density distribution characters of C-shaped armature in EML system. Advanced Technology of Electrical Engineering and Energy, 2012, 31(2): 23-26 https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN201202004.htm
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1282
  • HTML全文浏览量:  326
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-31
  • 修回日期:  2018-01-19
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回